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Total energy in Kohn-Sham DFT 1
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◮ Ts : kinetic energy of non-interacting electrons

◮ EH : electron-electron electrostatic Coulomb energy

◮ Ven : electron-nucleus electrostatic Coulomb energy

◮ Vnn : nucleus-nucleus electrostatic Coulomb energy

◮ Exc = Ex + Ec : exchange-correlation energy
Problem with Exc:

the exact form of Ec is too complicated to be useable =⇒

approximations have to be used in practice
1W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)



Approximations for Exc (Jacob’s ladder
1)

Exc =

∫

ǫxc (r) d
3
r

1. Local density approximation (LDA): ǫxc = f (ρ)

2. Generalized gradient approximation (GGA): ǫxc = f (ρ,∇ρ)

3. Meta-GGA: ǫxc = f
(
ρ,∇ρ,∇2ρ, t

)
, t = 1

2

∑

i |∇ψi |
2

4. The use of occupied orbitals (e.g., Hartree-Fock)

5. The use of unoccupied orbitals (e.g., RPA)

1J. P. Perdew et al., J. Chem. Phys. 123, 062201 (2005)



The one-electron Schrödinger equations

Minimization of Etot leads to

(

−
1

2
∇2 + ven(r) + vH(r) + v̂xc(r)

)

ψi (r) = ǫiψi (r)

Two ways of calculating v̂xc:

◮ v̂xc = δExc/δρ = vxc (KS method)

◮ v̂xc = (1/ψi )δExc/δψ
∗
i = vxc,i (generalized KS 1, e.g., HF)

Remarks:

◮ If Exc is an explicit functional of ρ (LDA and GGA), then both
possibilities lead to the same potential vxc.

◮ MGGA (with t) and hybrid functionals are usually
implemented in the generalized KS method.

1A. Seidl et al., Phys. Rev. B 53, 3764 (1996)



Semilocal functionals: GGA

ǫGGA
xc (ρ,∇ρ) = ǫLDA

xc (ρ)Fxc(rs , s)

where Fxc is the enhancement factor and

rs =
1

(
4
3πρ

)1/3
(Wigner-Seitz radius)

s =
|∇ρ|

2 (3π2)1/3 ρ4/3
(inhomogeneity parameter)

There are two types of GGA:

◮ Semi-empirical: contain parameters fitted to accurate (i.e.,
experimental) data.

◮ Ab initio: All parameters were determined by using
mathematical conditions obeyed by the exact functional.



Semilocal functionals: GGA

Fx(s) = ǫGGA
x /ǫLDA
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Construction of an universal GGA: A failure (up to now)
Attempts: RGE21, PBEint2, HTBS3
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1A. Ruzsinszky et al., J. Chem. Theory Comput. 5, 763 (2009)
2E. Fabiano et al., Phys. Rev. B 82, 113104 (2010)
3P. Haas et al., Phys. Rev. B 83, 205117 (2011)



Semilocal functionals: meta-GGA

ǫMGGA
xc (ρ,∇ρ, t) = ǫLDA

xc (ρ)Fxc(rs , s, α)

where Fxc is the enhancement factor and

◮ α = t−tW
tTF

◮ α = 1 where the electron density is uniform
◮ α = 0 in one- and two-electron regions
◮ α≫ 1 between closed shell atoms

=⇒ MGGA functionals are more flexible

Example: MGGA MS21 is

◮ as good as the best GGA for atomization energies of molecules

◮ as good as the best GGA for lattice constant of solids

◮ maybe not too bad for van der Waals systems

1J. Sun et al., Phys. Rev. Lett. 111, 106401 (2013)



Semilocal functionals: meta-GGA

Fx(s, α) = ǫMGGA
x /ǫLDA
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Semilocal functionals: MGGA MS2
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Semilocal functionals: modified Becke-Johnson potential

Modified Becke-Johnson (mBJ) potential: 1

v
mBJ
x (r) = cv

BR
x (r) + (3c − 2)
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where vBR
x is the Becke-Roussel potential, t is the kinetic-energy

density and c is given by

c = α+ β
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1F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)



Band gaps with mBJ
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How to run a calculation with the mBJ potential?

1. init lapw (choose LDA or PBE)

2. init mbj lapw (create/modify files)

2.1 automatically done: case.in0 modified and case.inm vresp
created

2.2 run(sp) lapw -i 1 -NI (creates case.r2v and case.vrespsum)
2.3 save lapw

3. init mbj lapw and choose one of the parametrizations:

0: Original mBJ values1

1: New parametrization2

2: New parametrization for semiconductors2

3: Original BJ potential3

4. Eventually: edit case.inm and choose PRATT with small mixing
factor smaller than 0.1

5. run(sp) lapw ...

1F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)
2D. Koller et al., Phys. Rev. B 85, 155109 (2012)
3A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006)



Input file case.in0: keywords for the xc-functional

The functional is specified at the first line of case.in0. Three
possibilities:

1. Specify a global keyword for Ex, Ec, vx, vc:
◮ TOT XC NAME

2. Specify a keyword for Ex, Ec, vx, vc individually:
◮ TOT EX NAME1 EC NAME2 VX NAME3 VC NAME4

3. Specify keywords to use functionals from LIBXC1:
◮ TOT XC TYPE X NAME1 XC TYPE C NAME2

◮ TOT XC TYPE XC NAME

where TYPE is the family name: LDA, GGA or MGGA

1M. A. L. Marques et al., Comput. Phys. Commun. 183, 2272 (2012)
http://www.tddft.org/programs/octopus/wiki/index.php/Libxc



Input file case.in0: examples with keywords

◮ PBE:
TOT XC PBE

or
TOT EX PBE EC PBE VX PBE VC PBE

or
TOT XC GGA X PBE XC GGA C PBE

◮ mBJ (with LDA for the xc-energy):
TOT XC MBJ

◮ MGGA MS2:
TOT XC MGGA MS 0.504 0.14601 4.0

︸ ︷︷ ︸

κ,c,b

All available functionals are listed in inputpars.f and vxclm2.f

(SRC lapw0 directory) and in
$WIENROOT/SRC lapw0/xc funcs.h for LIBXC (if installed)



Dispersion methods for DFT
Problem with semilocal functionals:

◮ They do not include London dispersion interactions

◮ Results are qualitatively wrong for systems where dispersion
plays a major role

Two common dispersion methods for DFT:

◮ Pairwise term1:

E
PW
c,disp = −

∑

A<B

∑

n=6,8,10,...

f
damp
n (RAB)

CAB
n

Rn
AB

◮ Nonlocal term2:

E
NL
c,disp =

1

2

∫ ∫

ρ(r)φ(r, r′)ρ(r′)d3
rd

3
r
′

1S. Grimme, J. Comput. Chem. 25, 1463 (2004)
2M. Dion et al., Phys. Rev. Lett. 92, 246401 (2004)



The DFT-D3 method1 in WIEN2k

◮ Features of DFT-D3:
◮ Very cheap (pairwise)
◮ CAB

n depend on positions of the nuclei (via coordination
number)

◮ Functional-dependent parameters
◮ Energy and forces (minimization of internal parameters)
◮ 3-body term

◮ Installation:
◮ Not included in WIEN2k
◮ Download and compile the DFTD3 package from

http://www.thch.uni-bonn.de/tc/index.php

copy the dftd3 executable in $WIENROOT
◮ input file case.indftd3
◮ run(sp) lapw -dftd3 . . .

1S. Grimme et al., J. Chem. Phys. 132, 154104 (2010)



The DFT-D3 method: the input file case.indftd3

Default (and recommended) input file:

method bj damping function f
damp
n

func default the one in case.in0∗

grad yes forces

pbc yes periodic boundary conditions

abc yes 3-body term

cutoff 95 interaction cutoff

cnthr 40 coordination number cutoff

num no numerical gradient

∗default will work for PBE, PBEsol, BLYP and TPSS. For other

functionals, the functional name has to be specified (see dftd3.f of

DFTD3 package)



The DFT-D3 method: hexagonal BN
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T
ot

al
en

er
gy

(m
R

y/
ce

ll
)

 

 
PBE
BLYP
PBE+D3
BLYP+D3



Strongly correlated electrons
Problem with semilocal functionals:

◮ They give qualitatively wrong results for solids which contain
localized 3d or 4f electrons

◮ The band gap is too small or even absent like in FeO
◮ The magnetic moments are too small
◮ Wrong ground state

Why?

◮ The strong on-site correlations are not correctly accounted for
by semilocal functionals.

(Partial) solution to the problem:

◮ Combine semilocal functionals with Hartree-Fock theory:
◮ DFT+U

◮ Hybrid

Even better:

◮ LDA+DMFT (DMFT codes using WIEN2k orbitals as input
exist)



On-site DFT+U and hybrid methods in WIEN2k

◮ For solids, the hybrid functionals are computationally very
expensive.

◮ In WIEN2k the on-site DFT+U1 and on-site hybrid2 methods
are available. These methods are approximations of the
Hartree-Fock/hybrid methods

◮ Applied only inside atomic spheres of selected atoms and
electrons of a given angular momentum ℓ.

On-site methods → As cheap as LDA/GGA.

1V. I. Anisimov et al., Phys. Rev. B 44, 943 (1991)
2P. Novák et al., Phys. Stat. Sol. (b) 243, 563 (2006)



DFT+U and hybrid exchange-correlation functionals
The exchange-correlation functional is

E
DFT+U/hybrid
xc = E

DFT
xc [ρ] + E

onsite[nmm′ ]

where nmm′ is the density matrix of the correlated electrons

◮ For DFT+U both exchange and Coulomb are corrected:

E
onsite = E

HF
x + ECoul

︸ ︷︷ ︸

correction

−E
DFT
x − E

DFT
Coul

︸ ︷︷ ︸

double counting

There are several versions of the double-counting term

◮ For the hybrid methods only exchange is corrected:

E
onsite = αEHF

x
︸ ︷︷ ︸

corr.

−αELDA
x

︸ ︷︷ ︸

d. count.

where α is a parameter ∈ [0, 1]



How to run DFT+U and on-site hybrid calculations?

1. Create the input files:
◮ case.inorb and case.indm for DFT+U

◮ case.ineece for on-site hybrid functionals (case.indm created
automatically):

2. Run the job (can only be run with runsp lapw):
◮ LDA+U: runsp lapw -orb . . .
◮ Hybrid: runsp lapw -eece . . .

For a calculation without spin-polarization (ρ↑ = ρ↓):
runsp c lapw -orb/eece . . .



Input file case.inorb

LDA+U applied to the 4f electrons of atoms No. 2 and 4:

1 2 0 nmod, natorb, ipr

PRATT,1.0 mixmod, amix

2 1 3 iatom, nlorb, lorb

4 1 3 iatom, nlorb, lorb

1 nsic (LDA+U(SIC) used)

0.61 0.07 U J (Ry)

0.61 0.07 U J (Ry)

nsic=0 for the AMF method (less strongly correlated electrons)
nsic=1 for the SIC method
nsic=2 for the HMF method



Input file case.ineece

On-site hybrid functional PBE0 applied to the 4f electrons of
atoms No. 2 and 4:

-12.0 2 emin, natorb

2 1 3 iatom, nlorb, lorb

4 1 3 iatom, nlorb, lorb

HYBR HYBR/EECE

0.25 fraction of exact exchange



SCF cycle of DFT+U in WIEN2k

lapw0 → vDFT
xc,σ + vee + ven (case.vspup(dn), case.vnsup(dn))

orb -up → v
↑

mm′ (case.vorbup)

orb -dn → v
↓

mm′ (case.vorbdn)

lapw1 -up -orb → ψ
↑

nk, ǫ
↑

nk (case.vectorup, case.energyup)

lapw1 -dn -orb → ψ
↓

nk, ǫ
↓

nk (case.vectordn, case.energydn)

lapw2 -up → ρ
↑

val
(case.clmvalup)

lapw2 -dn → ρ
↓

val
(case.clmvaldn)

lapwdm -up → n
↑

mm′ (case.dmatup)

lapwdm -dn → n
↓

mm′ (case.dmatdn)

lcore -up → ρ↑core (case.clmcorup)

lcore -dn → ρ↓core (case.clmcordn)

mixer → mixed ρσ and nσ
mm′



Hybrid functionals

◮ On-site hybrid functionals can be applied only to localized electrons

◮ Full hybrid functionals are necessary (but expensive) for solids with

delocalized electrons (e.g., in sp-semiconductors)

Two types of full hybrid functionals available in WIEN2k1:

◮ unscreened:

Exc = E
DFT
xc + α

(
E
HF
x − E

DFT
x

)

◮ screened (short-range), 1
|r−r′| →

e−λ|r−r
′|

|r−r′| :

Exc = E
DFT
xc + α

(
E
SR−HF
x − E

SR−DFT
x

)

screening leads to faster convergence with k-points sampling

1F. Tran and P. Blaha, Phys. Rev. B 83, 235118 (2011)



Hybrid functionals: technical details

◮ 10-1000 times more expensive than LDA/GGA

◮ k-point and MPI parallelization

◮ Approximations to speed up the calculations:

◮ Reduced k-mesh for the HF potential. Example:
For a calculation with a 12× 12× 12 k-mesh, the reduced
k-mesh for the HF potential can be:
6× 6× 6, 4× 4× 4, 3× 3× 3, 2× 2× 2 or 1× 1× 1

◮ Non-self-consistent calculation of the band structure

◮ Underlying functionals for unscreened and screend hybrid:
◮ LDA
◮ PBE
◮ WC
◮ PBEsol
◮ B3PW91
◮ B3LYP

◮ Use run bandplothf lapw for band structure



Hybrid functionals: input file case.inhf

Example for YS-PBE0 (similar to HSE06 from Heyd, Scuseria and Ernzerhof1)

0.25 fraction α of HF exchange

T screened (T, YS-PBE0) or unscreened (F, PBE0)

0.165 screening parameter λ
20 number of bands for the 2nd Hamiltonian

6 GMAX

3 lmax for the expansion of orbitals

3 lmax for the product of two orbitals

1d-3 radial integrals below this value neglected

Important: The computational time will depend strongly on the
number of bands, GMAX, lmax and the number of k-points

1A. V. Krukau et al., J. Chem. Phys. 125, 224106 (2006)



How to run hybrid functionals?

1. init lapw

2. Recommended: run(sp) lapw for the semilocal functional

3. save lapw

4. init hf lapw (this will create/modify input files)

4.1 adjust case.inhf according to your needs
4.2 reduced k-mesh for the HF potential? Yes or no
4.3 specify the k-mesh

5. run(sp) lapw -hf (-redklist) (-diaghf) ...



SCF cycle of hybrid functionals in WIEN2k

lapw0 -grr → vDFT
x (case.r2v), αEDFT

x (:AEXSL)

lapw0 → vDFT
xc + vee + ven (case.vsp, case.vns)

lapw1 → ψDFT
nk , ǫDFT

nk (case.vector, case.energy)

lapw2 →
∑

nk ǫ
DFT
nk (:SLSUM)

hf → ψnk, ǫnk (case.vectorhf, case.energyhf)

lapw2 -hf → ρval (case.clmval)

lcore → ρcore (case.clmcor)

mixer → mixed ρ



Calculation of quasiparticle spectra from many-body theory

◮ In principle the Kohn-Sham eigenvalues should be viewed as
mathematical objects and not compared directly to
experiment (ionization potential and electron affinity).

◮ The true addition and removal energies ǫi are calculated from
the equation of motion for the Green function:

(

−
1

2
∇2 + ven(r) + vH(r)

)

+

∫

Σ(r, r′, ǫi )ψi (r
′)d3

r
′ = ǫiψi (r)

◮ The self-energy Σ is calculated from Hedin’s self-consistent
equations1:

Σ(1, 2) = i

∫
G(1, 4)W (1

+
, 3)Γ(4, 2, 3)d(3, 4)

W (1, 2) = v(1, 2) +

∫
v(4, 2)P(3, 4)W (1, 3)d(3, 4)

P(1, 2) = −i

∫
G(2, 3)G(4, 2)Γ(3, 4, 1)d(3, 4)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3)d(4, 5, 6, 7)

1L. Hedin, Phys. Rev. 139, A769 (1965)



The GW and G0W0 approximations

◮ GW : vertex function Γ in Σ set to 1:

Σ(1, 2) = i

∫
G(1, 4)W (1+, 3)Γ(4, 2, 3)d(3, 4) ≈ iG(1, 2+)W (1, 2)

Σ(r, r′, ω) =
i

2π

∫ ∞

−∞

G(r, r′, ω + ω′)W (r, r′, ω′)e−iδω′

dω′

G(r, r′, ω) =

∞∑
i=1

ψi (r)ψ
∗
i
(r′)

ω − ǫi − iηi
W (r, r′, ω) =

∫
v(r, r′′)ǫ−1(r′′, r′, ω)d3r ′′

◮ G0W0 (one-shot GW ):
G and W are calculated using the Kohn-Sham orbitals and
eigenvalues. 1st order perturbation theory gives

ǫGWi = ǫKS

i + Z(ǫKS

i )〈ψKS

i |ℜ(Σ(ǫKS

i ))− vxc|ψ
KS

i 〉



A few remarks on GW

◮ GW calculations require very large computational ressources

◮ G and W depend on all (occupied and unoccupied) orbitals
(up to parameter emax in practice)

◮ GW is the state-of-the-art for the calculation of (inverse)
photoemission spectra, but not for optics since excitonic
effects are still missing in GW (BSE code from R. Laskowski)

◮ GW is more accurate for systems with weak correlations



FHI-gap: a LAPW GW code1

◮ Based on the FP-LAPW basis set

◮ Mixed basis set to expand the GW -related quantities

◮ Interfaced with WIEN2k

◮ G0W0, GW0 @LDA/GGA(+U)

◮ Parallelized

◮ http://www.chem.pku.edu.cn/jianghgroup/codes/fhi-gap.html

1H. Jiang et al., Comput. Phys. Comput. 184, 348 (2013)



Flowchart of FHI-gap



How to run the FHI-gap code?

1. Run a WIEN2k SCF calculation (in w2kdir)

2. In w2kdir, execute the script gap init to prepare the input files
for GW :

gap init -d <gwdir> -nkp <nkp> -s 0/1/2 -orb -emax <emax>

3. Eventually modify gwdir.ingw

4. Execute gap.x or gap-mpi.x in gwdir

5. Analyse the results from:

5.1 gwdir.outgw
5.2 the plot of the DOS/band structure generated by gap analy



Parameters to be converged for a GW calculation

◮ Usual WIEN2k parameters:
◮ Size of the LAPW basis set (RKmax)
◮ Number of k-points for the Brillouin zone integrations

◮ GW -specific parameters:
◮ Size of the mixed basis set
◮ Number of unoccupied states (emax)
◮ Number of frequencies ω for the calculation of Σ =

∫
GWdω



Band gaps
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Thank your for your attention!


