

Hyperfine interactions

Karlheinz Schwarz

Institute of Materials Chemistry TU Wien

Some slides were provided by Stefaan Cottenier (Gent)

Definition :

hyperfine interaction

all aspects of the nucleus-electron interaction which go beyond an electric point charge for a nucleus.

How to measure hyperfine interactions?

- NMR
- NQR
- Mössbauer spectroscopy
- TDPAC
- Laser spectroscopy
- LTNO
- NMR/ON
- PAD

This talk:

- Hyperfine physics
- How to calculate HFF with WIEN2k

Content

- Definitions
- magnetic hyperfine interaction
- electric quadrupole interaction
- isomer shift
- summary

N. 11/1/1

 $E = -\vec{\mu} \cdot \vec{B} \\ = -\mu B \cos \theta$

↑Ε

 \vec{B}

E

$$E = -\vec{\mu} \cdot \vec{B} \\ = -\mu B \cos \theta$$

$$E = -\vec{\mu} \cdot \vec{B} \\ = -\mu B \cos \theta$$

 \vec{B}

↑Ε

$$E = -\vec{\mu} \cdot \vec{B} \\ = -\mu B \cos \theta$$

interaction energy (dot product) :

$$E = -\vec{\mu} \cdot \vec{B}$$

$$B_{tot} = B_{dip} + B_{orb} + B_{fermi} + B_{lat}$$

$$B_{tot} = B_{dip} + B_{orb} + B_{fermi} + B_{lat}$$

$$B_{tot} = B_{dip} + B_{orb} + B_{fermi} + B_{lat}$$

$$B_{tot} = B_{dip} + B_{orb} + B_{fermi} + B_{lat}$$

$$B_{tot} = B_{dip} + B_{orb} + B_{fermi} + B_{lat}$$

How to do it in WIEN2k?

Magnetic hyperfine field

In regular scf file:

:HFFxxx (Fermi contact contribution)

After post-processing with LAPWDM :

- orbital hyperfine field ("3 3" in case.indmc)
- dipolar hyperfine field ("3 5" in case.indmc)

After post-processing with DIPAN :

- lattice contribution
- in case.outputdipan

more info: UG 7.8 (lapwdm) UG 8.3 (dipan)

Isomer shift: δ = α (ρ₀^{Sample} - ρ₀^{Reference}); α=-.291 au³mm s⁻¹
 proportional to the electron density ρ at the nucleus

Magnetic Hyperfine fields: B_{tot}=B_{contact} + B_{orb} + B_{dip}

$$B_{contact} = 8\pi/3 \,\mu_B \left[\rho_{up}(0) - \rho_{dn}(0) \right] \qquad \text{spin-density at the nucleus}$$

$$\vec{B}_{orb} = 2\mu_B \langle \Phi | \frac{S(r)}{r^3} \vec{l} | \Phi \rangle \qquad \text{orbital-moment}$$

$$\vec{B}_{dip} = 2\mu_B \langle \Phi | \frac{S(r)}{r^3} \left[3(\vec{s} \, \vec{r}) \, \vec{r} - \vec{s} \right] \left| \Phi \right\rangle \qquad \text{spin-moment}$$

S(r) is reciprocal of the relativistic mass enhancement $S(r) = \left| 1 + \frac{\epsilon - V(r)}{2mc^2} \right|^{-1}$

Charged ordered Fe²⁺ Fe³⁺ CO structure: Pmma a:b:c=2.09:1:1.96 (20K)

Valence mixed Fe^{2.5+}

VM structure: Pmmm a:b:c=1.003:1:1.93 (340K)

Fe²⁺ and Fe³⁺ chains along b

GGA+U

single lower Hubbard-band in VM splits in CO with Fe³⁺ states lower than Fe²⁺

CO phase

VM phase

Fe²⁺: d-x2 Fe³⁺: d-x² O1 and O3: polarized toward Fe³⁺

Fe: d-z² Fe-Fe interaction O: symmetric

YBaFe₂O₅ HFF, IS and EFG with GGA+U, LDA/GGA

TABLE VIII: Hyperfine fields B (in Tesla), isomer shifts δ (mm/s) and quadrupole coupling constants eQV_{zz} (mm/s) for the CO phase for various exchange and correlation potentials and experiment⁸⁻¹⁰.

<u>^</u>		exp.		GGA+	+U	LDA	GGA
	U_{eff} [eV]		5	6	_		
	B_{dip}	—	-16.29	-16.49		-6.68	-12.67
	Borb	—	-6.73	-6.90	$HFF(E_{0}^{2+})$	-9.57	-6.34
$Fe2^{2+}$	$B_{contact}$	—	32.25	32.23		32.21	31.58
	B_{tot}	~ 8	9.23	8.83		15.96	12.57
	δ	~ 1	0.92	0.94		0.74	0.79
	eQV_{zz}	$3.6 - 4^{a}$	3.66	3.74		-0.82	2.60
	B_{dip}	—	-0.67	-0.60	$HFF(F \Delta^{3+})$	1.29	0.39
Fe1 ³⁺	Borb	_	-0.52	-0.45		-7.96	-2.65
	$B_{contact}$		37.65	38.28		29.64	31.63
	B_{tot}	~ 50	36.46	37.24		22.97	29.37
	δ	~ 0.4	0.33	0.30		0.50	0.47
	eQV_{zz}	$1 - 1.5^{a}$	1.46	1.50		1.04	-0.30
^a dependir	ng on rare earth ion						
		exp.		GGA+	-U	LDA	GGA
VIVI	U_{eff} [eV]		5	6			
	B_{dip}	—	-3.00	-2.98		-2.13	-2.83
$\mathrm{Fe}^{2.5+}$	B_{orb}	_	-3.11	-2.99		-5.47	-4.56
	$B_{contact}$		41.17	40.96	HFF(Fe ^{2.5+})	33.10	36.36
	B_{tot}	~ 30	35.06	34.98		25.50	28.98
	δ	~ 0.5	0.53	0.52		0.60	0.60
	eQV_{zz}	~ 0.1	0.12	0.13		0.19	-0.27

Content

- Definitions
- magnetic hyperfine interaction
- electric quadrupole interaction
- isomer shift
- summary

 $E = V_0 Z$

+ . . .

between nuclear charge distribution (σ) and external potential
 $E = \int \sigma_n(x) V(x) \, dx$ Taylor-expansion at the nuclear position

direction independent constant

$$+\sum_{i}\frac{\partial V(0)}{\partial x_{i}}\int \sigma(x) x_{i} dx$$

electric field x nuclear dipol moment (=0)

 $+\frac{1}{2}\sum_{ij}\frac{\partial^2 V(0)}{\partial x_i \partial x_j} \int \int \sigma(x) x_i x_j dx \text{ end}$

electric fieldgradient x nuclear quadrupol moment Q

higher terms neglected

nucleus with charge Z, but not a sphere

• Force on a point charge:

$$\vec{F} = Q\vec{E}$$

• Force on a point charge:

$$\vec{F} = Q\vec{E}$$

• Force on a general charge:

$$\vec{F} = \int \vec{E} \, dQ$$
$$= Q\vec{E}$$

electron property

(tensor - rank 2)

 \overleftarrow{V}

interaction energy (dot product) :

$$E_Q \propto \overleftrightarrow{Q} \cdot \overleftrightarrow{V}$$

- Nuclei with a nuclear quantum number I ≥ 1 have an electrical quadrupole moment Q
- Nuclear quadrupole interaction (NQI) can aid to determine the distribution of the electronic charge surrounding such a nuclear site

First-principles calculation of EFG

PHYSICAL REVIEW LETTERS VOLUME 54, NUMBER 11 , 1192

First-Principles Calculation of the Electric Field Gradient of Li₃N

P. Blaha and K. Schwarz

Institut für Technische Elektrochemie, Technische Universität Wien, A-1060 Vienna, Austria

and

P. Herzig Institut für Physikalische Chemie, Universität Wien, A-1090 Vienna, Austria (Received 5 December 1984)

Fig. 1. Crystal structure of Li₃N with increased c dimension

Li(1)/Li(2)N Li(2)Li(1)Model for Φ_{π} 0.33 -20.379.01 2.26 -→ Point charge 3.41 2.00 -7.473.72 Muffin-tin LAPW 3.41 -6.94Present work 2.88 -5.87Experiment

Previous: point charge model and Sternheimer factor to experimental value

FIG. 1. Difference electron density of Li_3N in the (110) plane with respect to a superposition of Li^+ and N^{3-} ionic densities; contour intervals and numbers are in units of 0.01 $e Å^{-3}$: (a) GP-LAPW (present work), (b) MT-LAPW [taken from Fig. 5(b) of Ref. 10].

- The charge anisotropy around N differs strongly between
 - muffin-tin and
 - full-potential
 - affecting the EFG.

Nuclear quadrupole moment of 57Fe

VOLUME 75, NUMBER 19 , 3545 PHYSICAL REVIEW LETTERS

Determination of the Nuclear Quadrupole Moment of ⁵⁷Fe

Philipp Dufek, Peter Blaha, and Karlheinz Schwarz

Institut für Technische Elektrochemie, Technische Universität Wien, A-1060 Vienna, Austria (Received 17 July 1995)

Theoretical and experimental Fe-EFG in Fe-compounds

- From the slope between
 - the theoreical EFG and
 - experimental quadrupole splitting Δ_Q (mm/s)
- the nuclear quadrupole moment Q of the most important Mössbauer nucleus is found to be about twice as large (Q=0.16 b) as so far in literature (Q=0.082 b)

6 NOVEMBER 1995

Cartesian LM-repr.

 $V_{zz} \propto V_{20}(r=0)$

 $V_{yy} \propto -\frac{1}{2}V_{20} - V_{22}$

 $V_{xx} \propto -\frac{1}{2}V_{20} + V_{22}$

EFG is a tensor of second derivatives of V_c at the nucleus:

$$V_{ij} = \frac{\partial^2 V(0)}{\partial x_i \partial x_j} \qquad V_c(r) = \int \frac{\rho(r')}{r - r'} dr' = \sum_{LM} V_{LM}(r) Y_{LM}(\hat{r})$$
$$V_{zz} \propto \int \frac{\rho(r) Y_{20}}{r^3} dr = V_{zz}^p + V_{zz}^d$$
$$V_{zz}^p \propto \left\langle \frac{1}{r^3} \right\rangle_p \left[\frac{1}{2} (p_x + p_y) - p_z \right]$$
$$V_{zz}^d \propto \left\langle \frac{1}{r^3} \right\rangle_d \left[d_{xy} + d_{x^2 - y^2} - \frac{1}{2} (d_{xz} + d_{yz}) - d_{z^2} \right]$$

EFG is proportional to differences in orbital occupations

- YBa₂Cu₃O₇
- Electronic structure
- Charge density, EFG
 - EFG (electric field gradient)

K.Schwarz, C.Ambrosch-Draxl, P.Blaha, Phys.Rev. B 42, 2051 (1990)

Interpretation of the EFG (measured by NQR) at the oxygen sites

	p _x	py	pz	V _{aa}	V _{bb}	V _{cc}
O(1)	1.18	0.91	1.25	-6.1	18.3	-12.2
0(2)	1.01	1.21	1.18	11.8	-7.0	-4.8
O(3)	1.21	1.00	1.18	-7.0	11.9	-4.9
O(4)	1.18	1.19	0.99	-4.7	-7.0	11.7

EF Cu₁-d

Asymmetry count **EFG** (p-contribution)

$$\Delta n_p = p_z - \frac{1}{2}(p_x + p_y) \qquad V_{zz}^p \propto \Delta n_p < \frac{1}{r^3} >_p$$

EFG is proportional to asymmetric charge distribution around given nucleus

partly occupied

non-bonding O-p, C

EFG (10²¹ V/m²) in YBa₂Cu₃O₇

Site		Vxx	Vyy	Vzz	η
Υ	theory	-0.9	2.9	-2.0	0.4
	exp.	-	-	-	-
Ba	theory	-8.7	-1.0	9.7	0.8
	exp.	8.4	0.3	8.7	0.9
Cu(1)	theory	-5.2	6.6	-1.5	0.6
	exp.	7.4	7.5	0.1	1.0
Cu(2)	theory	2.6	2.4	-5.0	0.0
	exp.	6.2	6.2	12.3	0.0
0(1)	theory	-5.7	17.9	-12.2	0.4
	exp.	6.1	17.3	12.1	0.3
O(2)	theory	12.3	-7.5	-4.8	0.2
	exp.	10.5	6.3	4.1	0.2
O(3)	theory	-7.5	12.5	-5.0	0.2
	exp.	6.3	10.2	3.9	0.2
O(4)	theory	-4.7	-7.1	11.8	0.2
	exp.	4.0	7.6	11.6	0.3

standard LDA calculations give good EFGs for all sites except Cu(2)

- K.Schwarz, C.Ambrosch-Draxl, P.Blaha, Phys.Rev. B42, 2051 (1990)
- D.J.Singh, K.Schwarz, P.Blaha, Phys.Rev. B46, 5849 (1992)

a transfer of 0.07 e into the d_z^2 would increase the EFG from -5.0 by

$$V_{zz}^{d} = -.14 \times 47 = -6.6$$

bringing it to -11.6 inclose to the Experimental value (-12.3 10²¹ V/m²)

How to do it in WIEN2k?

Electric-field gradient

In regular scf file:

- :EFGxxx
- :ETAxxx

Main directions of the EFG

Full analysis printed in case.output2 if EFG keyword in case.in2 is put (UG 7.6) (split into many different contributions)

more info:

- Blaha, Schwarz, Dederichs, PRB 37 (1988) 2792
- EFG document in wien2k FAQ (Katrin Koch, SC)

EFGs in fluoroaluminates

10 different phases of known structures from CaF_2-AIF_3 , BaF₂-AIF₃ binary systems and CaF₂-BaF₂-AIF₃ ternary system

I E N W 2k

v_{Q} and η_{Q} calculations using XRD data

Important discrepancies when structures are used which were determined from X-ray powder diffraction data

v_{Q} and η_{Q} after structure optimization

Very fine agreement between experimental and calculated values

M.Body, et al., *J.Phys.Chem. A 2007, 111, 11873* (Univ. LeMans)

Content

- Definitions
- magnetic hyperfine interaction
- electric quadrupole interaction
- isomer shift
- summary

YBaFe₂O₅ HFF, IS and EFG with GGA+U, LDA/GGA

TABLE VIII: Hyperfine fields B (in Tesla), isomer shifts δ (mm/s) and quadrupole coupling constants eQV_{zz} (mm/s) for the CO phase for various exchange and correlation potentials and experiment⁸⁻¹⁰.

<u> </u>		exp.		LDA	GGA			
	U_{eff} [eV]		5	6	7	8		
	B_{dip}	—	-16.29	-16.49	-16.66	-16.83	-6.68	-12.67
	B_{orb}	—	-6.73	-6.90	-8.26	-7.65	-9.57	-6.34
$Fe2^{2+}$	$B_{contact}$	—	32.25	32.23	32.58	32.60	32.21	31.58
	B_{tot}	~ 8	9.23	8.83	7.66	8.13	15.96	12.57
	δ	~ 1	0.92	0.94	0.96	0.99	0.74	0.79
	eQV_{zz}	$3.6 - 4^{a}$	3.66	3.74	3.81	3.89	-0.82	2.60
	B_{dip}	—	-0.67	-0.60	-0.52	-0.45	1.29	0.39
	Borb	—	-0.52	-0.45	-0.37	-0.28	-7.96	-2.65
$Fe1^{3+}$	$B_{contact}$	_	37.65	38.28	38.15	37.86	29.64	31.63
	B_{tot}	~ 50	36.46	37.24	37.26	37.12	22.97	29.37
	δ	~ 0.4	0.33	0.30	0.28	0.25	0.50	0.47
	eQV_{zz}	$1 - 1.5^{a}$	1.46	1.50	1.51	1.52	1.04	-0.30
^a depending	g on rare earth ion							
		exp.		C	GA+U		LDA	GGA
VIVI	U_{eff} [eV]		5	6	7	8		
	B_{dip}	—	-3.00	-2.98	-2.95	-2.87	-2.13	-2.83
	B_{orb}	_	-3.11	-2.99	-2.84	-2.74	-5.47	-4.56
$\mathrm{Fe}^{2.5+}$	$B_{contact}$	_	41.17	40.96	41.45	41.17	33.10	36.36
	B_{tot}	~ 30	35.06	34.98	35.67	35.56	25.50	28.98
	δ	~ 0.5	0.53	0.52	0.51	0.49	0.60	0.60
	eQV_{zz}	~ 0.1	0.12	0.13	0.13	0.13	0.19	-0.27

Cu(2) and O(4) EFG as function of r

r

EFG is determined by the non-spherical charge density inside sphere $\rho(r) = \sum \rho_{LM}(r) Y_{LM} \qquad V_{zz} \propto \int \frac{\rho(r) Y_{20}}{r^3} dr = \int \rho_{20}(r) r \, dr$ 0.2-3--5- $\rho_{20}(r)r^2$ 0.1-V20(r) Cu(2) -10-0 0.0 ρ₂₀(r)/r -3--15 -0.1--20 final EFG 12.0 0.02 0.5 $\frac{\rho_{22}(\mathbf{r})\mathbf{r}^2}{\sqrt{2}}$ $V_{20}(r)$ $\rho_{22}(r)/r$ O(4) 0.00-9.0-0.0--0.02 6.0- $' ho_{20}(r) / r$ -0.5- $V_{22}(r)$ 3.0--0.04 $\dot{\rho}_{20}(\mathbf{r})\mathbf{r}^2$ 0.0 -1.0--0.06r 1 r 1

 Depending on the atom, the main EFG-contributions come from anisotropies (in occupation or wave function)

- semicore p-states (eg. Ti 3p much more important than Cu 3p)
- valence p-states (eg. O 2p or Cu 4p)
- valence d-states (eg. TM 3d,4d,5d states; in metals "small")
- valence f-states (only for "localized" 4f,5f systems)

usually only contributions within the first node or within 1 bohr are important.

