

Hyperfine interactions

Mössbauer, PAC and NMR Spectroscopy: Quadrupole splittings, Isomer shifts, Hyperfine fields (NMR shifts)

Peter Blaha

Institute of Materials Chemistry TU Wien

hyperfine interaction

=

all aspects of the nucleus-electron interaction which go beyond an electric point charge for a nucleus

> **and is measured at the nucleus (affects the nucleus)**

nucleus with volume, shape and magnetic moment

NMRNQR Mössbauer spectroscopy TDPAC

Example 1 between nuclear charge distribution (σ) and external potential \int $E = \int \sigma_n(x) V(x) dx$

i j

x x x dx

Taylor-expansion at the nuclear position

 $\frac{V(0)}{2} \int \int \sigma(x)$

 $E = V_{0}Z$

$$
+\sum_{i}\frac{\partial V(0)}{\partial x_{i}}\int \sigma(x)\;x_{i}\;dx
$$

 $\partial x_i\partial$

2

 $\sum_{\alpha} \frac{\partial V(0)}{\partial x \partial y} \iiint$

 χ *,CX*

 $i^{\bigcup \mathcal{N}}$ *j*

(0)

direction independent constant (monopole interaction)

electric field x nuclear dipol moment $(=0)$

 $\sigma(x)$ x, x, dx electric fieldgradient x nuclear quadrupol moment Q

higher terms neglected

nucleus with charge Z, but not a sphere

 $+ \ldots$

2

1

 $+\frac{1}{\sqrt{2}}\sum \frac{\partial}{\partial x}$

ij

■ Mössbauer Isomer Shift 8:

- nintegral over nuclear radius of electron density x nuclear charge
- nuclear radii are different for ground and excited state

Quadrupole interaction

$$
E=\frac{1}{2}\sum_{ij}V_{ij}Q
$$

 $Q(^{57}Fe) = 0.16$ barn V_{ij}: traceless 3x3 tensor of **electric field gradient** EFG (2nd derivative of V(0))

 \Rightarrow *ccbc ac cbbb ab caba aa V V V V V V V V V zz yy xx V V V* $\pmb{0}$ $\pmb{0}$ $\pmb{0}$ $\pmb{0}$ $\pmb{0}$ $\pmb{0}$ similarity transformation
 $\overline{V} = \overline{V} = \overline{$

 $V_{xx} + V_{yy} + V_{zz} = 0$ $|V_{zz}| \ge |V_{yy}| \ge |V_{xx}|$ with

EFG characterized by principal component V_{zz} and asymmetry parameter η

$$
\eta = \frac{\frac{V_{xx} - V_{yy}}{V_{zz}}}{V_{zz}}
$$

$$
QS = \frac{1}{2}eQV_{zz}\sqrt{1+\frac{\eta^2}{3}}
$$

First-principles calculation of EFG

PHYSICAL REVIEW LETTERS VOLUME 54, NUMBER 11, 1192

18 MARCH 1985

First-Principles Calculation of the Electric Field Gradient of Li₃N

P. Blaha and K. Schwarz

Institut für Technische Elektrochemie, Technische Universität Wien, A-1060 Vienna, Austria

and

P. Herzig Institut für Physikalische Chemie, Universität Wien, A-1090 Vienna, Austria (Received 5 December 1984)

Fig. 1. Crystal structure of Li_3N with increased c dimension

TABLE I. Electric field gradient Φ_{zz} in 10²⁰ V m⁻².

VOLUME 75, NUMBER 19, 3545 PHYSICAL REVIEW LETTERS

6 NOVEMBER 1995

Determination of the Nuclear Quadrupole Moment of ⁵⁷Fe

Philipp Dufek, Peter Blaha, and Karlheinz Schwarz Institut für Technische Elektrochemie, Technische Universität Wien, A-1060 Vienna, Austria (Received 17 July 1995)

Theoretical and experimental Fe-EFG in Fe-compounds

 $E = \frac{1}{2} \sum_{ij} V_{ij} Q$

- **From the slope between**
	- \blacksquare the theoreical EFG and
	- experimental quadrupole splitting $\Delta_{\mathcal{O}}$ (mm/s)
- the nuclear quadrupole moment Q of the most important Mössbauer nucleus is found to be about twice as large $(Q=0.16 b)$ as so far in literature $(Q=0.082 b)$

theoretical EFG calculations

We write the charge density and the potential inside the atomic spheres in a lattice-harmonics expansion

orbital decomposition :

$$
\rho_{20}(r) = \int_{k,n,l,l',m,m'} \sum_{m'} \phi_{l'm'}^{nk'} Y_{20} d\hat{r} \implies p-p; d-d; (s-d) contr.
$$

$$
V_{zz} = V_{zz}^{pp} + V_{zz}^{dd} + + \text{ interstitial}
$$

theoretical EFG calculations

$$
V_{zz} = V_{zz}^{pp} + V_{zz}^{dd} + \dots + \text{ interstital}
$$

\n
$$
V_{zz}^{pp} \propto \left\langle \frac{1}{r^3} \right\rangle_p \left[1/2 (p_x + p_y) - p_z \right]
$$

\n
$$
V_{zz}^{dd} \propto \left\langle \frac{1}{r^3} \right\rangle_d \left[d_{xy} + d_{x^2 - y^2} - \frac{1}{2} (d_{xz} + d_{yz}) - d_{z^2} \right]
$$

- EFG is **proportial** to **differences of orbital occupations ,** e.g. between $\rho_{_{\mathcal{X}}} \rho_{_{\mathcal{Y}}}$ and $\rho_{_{\mathcal{Z}}}$.
- if these occupancies are the same by symmetry (cubic): V_{zz} =0
- with "axial" (hexagonal, tetragonal) symmetry (p_x=p_y): n=0

In the following various examples will be presented.

K.Schwarz, C.Ambrosch-Draxl, P.Blaha, Phys.Rev. B42, 2051 (1990)

D.J.Singh, K.Schwarz, K.Schwarz, Phys.Rev. B46, 5849 (1992)

Interpretation of the EFG at the oxygen sites

Asymmetry count **EFG** (p-contribution)

$$
\Delta n_p = p_z - \frac{1}{2}(p_x + p_y) \left| V_{zz}^p \propto \Delta n_p < \frac{1}{r^3} > p \right|
$$

EFG is proportional to asymmetric charge distribution around given nucleus

partly occupied

a transfer of 0.07 e into the d_2^2 would increase the EFG from -5.0 by

$$
V_{zz}^d = -.14 \times 47 = -6.6
$$

bringing it to -11.6 inclose to the Experimental value $(-12.3 10^{21} V/m^2)$

2

EFG is determined by the non-spherical charge density inside sphere (r) $V = \sum \rho_{LM}(r) Y_{LM}$ $V_{zz} \propto \int \frac{\rho(r) Y_{M}}{r^{3}}$ ρ $\sum \rho_{LM}(r)Y_{LM} \qquad V_{zz} \propto \int \frac{\rho(r)Y_{20}}{r^3} dr = \int$ $\frac{20}{r}dr = |\rho|$ $V_{zx} \propto \left(\frac{P(V)Y_{2M}}{3} \right) dr = \left(\frac{P(V)Y_{20}}{2} dr \right)$ $V = \sum_{r} \rho_{r} (r) Y_{r}$ $V = \infty$ $\frac{P(r) - 20}{r^2} dr = \rho_{r} (r) r dr$ $L_M(r)Y_{LM}$ $V_{zz} \propto \left[\frac{P(r) \pm 20}{3} dr\right] = \left[\rho_{20}(r)\right]$ $\rho(r) = \sum \rho$ *rLM* 0.2 $-5 3¹$ $\rho_{_{20}}(\mathtt{r})\mathtt{r}^2$ $0.1 V_{20}(r)$ $Cu(2)$ $-10-$ 0 \blacksquare $-3 \rho_{20}(\mathbf{r})/\mathbf{r}$ $-15 -0.1 -20$ - 6 rrfinal EFG 12.0 0.02 0.5 $\int_{22}^{\rho} (r) r^2$ $V_{20}(\textbf{r})$ $O(4)$ $\rho_{22}(\mathbf{r})/\mathbf{r}$ $| 0.00 |$ \mathbf{r} $9.0 0.0 -0.02 6.0 \sqrt{\rho_{20}^{\left(\mathrm{r}\right)/\mathrm{r}}}$ $-0.5 V_{22}(r)$ $3.0 -0.04$ $\sqrt{\rho_{20}^2(r) r^2}$ 0.0 -0.06 $r₁$ rr

Depending on the atom, the main EFG-contributions come from anisotropies (in occupation or wave function)

- semicore p-states (eg. Ti 3p much more important than Cu 3p)
- valence p-states (eg. O 2p or Cu 4p)
- valence d-states (eg. TM 3d,4d,5d states; in metals "small")
- valence f-states (only for "localized" 4f,5f systems)

usually only contributions within the first node or within 1 bohr are important.

- Undoped Cuprates (La₂CuO₄, YBa₂Cu₃O₆) are nonmagnetic metals instead of antiferromagnetic insulators
- Both, doped and undoped cuprates have a "planar Cu" EFG which is by a factor of 2-3 too small
- We need a method which giver a better description of correlated 3d electrons: can LDA+U fix these problems ??

EFGs in fluoroaluminates

 $\sum_{i=1}^{\infty}$ Al3+

10 different phases of known structures from $CaF₂$ -AlF₃, $BaF₂-AlF₃$ binary systems and CaF₂-BaF₂-AlF₃ ternary system

Important discrepancies when structures are used which were determined from X-ray powder diffraction data

Very fine agreement between experimental and calculated values

M.Body, et al., J.Phys.Chem. A 2007, 111, 11873 (Univ. LeMans)

 Zeman - interaction between magnetic moment I of the nucleus and the external magnetic field B (at the nucleus, produced by the spin-polarized e- in a FM)

magnetic fields at nucleus:

Source of magnetic fields at the nuclear site in an atom/solid

$$
\mathsf{B}_{\mathsf{tot}} = \mathsf{B}_{\mathsf{dip}} + \mathsf{B}_{\mathsf{orb}} + \mathsf{B}_{\mathsf{fermi}} + \mathsf{B}_{\mathsf{lat}}
$$

Magnetic Hyperfine fields: $B_{\text{tot}} = B_{\text{contact}} + B_{\text{orb}} + B_{\text{dip}}$

$$
B_{contact} = 8\pi/3 \mu_B [\rho_{up}(0) - \rho_{dn}(0)] \qquad \dots \qquad spin-density at the nucleus
$$

\n
$$
\vec{B}_{orb} = 2\mu_B \langle \Phi | \frac{S(r)}{r^3} \vec{l} | \Phi \rangle \qquad \dots \qquad orbital-moment
$$

\n
$$
\vec{B}_{dip} = 2\mu_B \langle \Phi | \frac{S(r)}{r^3} \left[3(\vec{s} \vec{r}) \vec{r} - \vec{s} \right] | \Phi \rangle \qquad \dots \qquad spin-moment
$$

S(r) is reciprocal of the relativistic mass enhancement $S(r) = \left[1 + \frac{\epsilon - V(r)}{2mc^2}\right]^{-1}$

Magnetic hyperfine field

In regular scf file:

 $:HFFxxx$ (Fermi contact contribution)

After post-processing with LAPWDM:

- · orbital hyperfine field ("3 3" in case indmc)
- · dipolar hyperfine field ("3 5" in case indmc)

in case.scfdmup

After post-processing with DIPAN:

· lattice contribution

in case.outputdipan

more info: UG 7.8 (lapwdm) UG 8.3 (dipan)

charge ordered (CO) phase: valence mixed (VM) phase: Pmma a:b:c=2.09:1:1.96 (20K)

a:b:c=2.09:1:1.96 (20K) Pmmm a:b:c=1.003:1:1.93 (340K)

- \blacksquare Fe²⁺ and Fe³⁺ form chains along b
- contradicts Anderson charge-ordering conditions with minimal electrostatic repulsion (checkerboard like pattern)
- **has to be compensated by orbital ordering and e-lattice coupling**

DOS: GGA+U vs. GGA

GGA

GGA+U GGA

$\mathcal{L}_{\mathcal{A}}$ CO phase VM phase

Mössbauer spectroscopy

EFG: Fe²⁺ has too small anisotropy in LDA/GGA

Mössbauer:

- П ${\bf A} = \{e Q V_{zz} (1 + \eta^2/3)^{1/2}\} / 2 ; \qquad {\bf A} = (E_y \Delta_y) / c$
- \blacksquare $\varDelta_{_{\mathcal{V}}}$

 $Q(^{57}Fe) = 0.16$ b; $E_y = 14410$ eV

 \blacksquare Vzz [10²¹ V/m²] = 6 * $\Delta_{\rm v}$ [mm/s]

\blacksquare NMR:

- \bullet v_Q = (3 e Q V_{zz}) / {2 h I (2 I 1)} I .. nuclear spin quantum n.
- V_{zz} [10²¹ V/m²] = 4.135 10¹⁹ v_Q [MHz] / Q [b] $Q(^{49}Ti)$ =0.247 b