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Outline of the talk

◮ Introduction

◮ Semilocal functionals:
◮ GGA and MGGA
◮ mBJ potential (for band gap)
◮ Input file case.in0

◮ Methods for van der Waals systems:
◮ DFT-D3
◮ Nonlocal functionals

◮ On-site methods for strongly correlated d and f electrons:
◮ DFT+U

◮ Hybrid functionals

◮ Hybrid functionals



Total energy in Kohn-Sham DFT1
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◮ Ts : kinetic energy of the non-interacting electrons

◮ Eee : repulsive electron-electron electrostatic Coulomb energy

◮ Een : attractive electron-nucleus electrostatic Coulomb energy

◮ Enn : repulsive nucleus-nucleus electrostatic Coulomb energy

◮ Exc = Ex + Ec : exchange-correlation energy
Approximations for Exc have to be used in practice
=⇒ The reliability of the results depends mainly on Exc

1
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

http://dx.doi.org/10.1103/PhysRev.140.A1133


Approximations for Exc (Jacob’s ladder
1)

Exc =

∫

ǫxc (r) d
3
r

The accuracy, but also the computational cost, increase when climbing up the ladder

1
J. P. Perdew et al., J. Chem. Phys. 123, 062201 (2005)

http://dx.doi.org/10.1063/1.1904565


Kohn-Sham Schrödinger equations

Minimization of Etot leads to

(

−
1

2
∇2 + vee(r) + ven(r) + v̂xc(r)

)

ψi (r) = ǫiψi (r)

Two types of v̂xc:

◮ Multiplicative: v̂xc = δExc/δρ = vxc (KS method)

◮ LDA
◮ GGA

◮ Non-multiplicative: v̂xc = (1/ψi )δExc/δψ
∗

i = vxc,i (generalized KS1)

◮ Hartree-Fock
◮ LDA+U

◮ Hybrid (mixing of GGA and Hartree-Fock)
◮ MGGA
◮ Self-interaction corrected (Perdew-Zunger)

1
A. Seidl et al., Phys. Rev. B 53, 3764 (1996)

http://dx.doi.org/10.1063/1.1904565


Semilocal functionals: GGA

ǫGGA
xc (ρ,∇ρ) = ǫLDA

x (ρ)Fxc(rs , s)

where Fxc is the enhancement factor and

rs =
1

(
4
3πρ

)1/3
(Wigner-Seitz radius)

s =
|∇ρ|

2 (3π2)1/3 ρ4/3
(inhomogeneity parameter)

There are two types of GGA:

◮ Semi-empirical: contain parameters fitted to accurate (i.e.,
experimental) data.

◮ Ab initio: All parameters were determined by using
mathematical conditions obeyed by the exact functional.



Semilocal functionals: trends with GGA

Exchange enhancement factor Fx(s) = ǫGGA
x /ǫLDA

x
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Construction of an universal GGA: A failure

Test of functionals on 44 solids1
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•  The accurate GGA for solids (cohesive energy/lattice constant).
   They are ALL very inaccurate for the atomization of molecules

1
F. Tran et al., J. Chem. Phys. 144, 204120 (2016)

http://dx.doi.org/10.1063/1.4948636


Semilocal functionals: meta-GGA

ǫMGGA
xc (ρ,∇ρ, t) = ǫLDA

xc (ρ)Fxc(rs , s, α)

◮ α = t−tW
tTF

◮ α = 1 (region of constant electron density)
◮ α = 0 (in one- and two-electron regions very close and very far

from nuclei)
◮ α≫ 1 (region between closed shell atoms)

=⇒ MGGA functionals are more flexible

Example: SCAN1 is

◮ as good as the best GGA for atomization energies of molecules

◮ as good as the best GGA for lattice constant of solids

1
J. Sun et al., Phys. Rev. Lett. 115, 036402 (2015)

http://dx.doi.org/10.1103/PhysRevLett.115.036402


Semilocal functionals: meta-GGA

Fx(s, α) = ǫMGGA

x /ǫLDA
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Semilocal functionals: MGGA MS2 and SCAN

Test of functionals on 44 solids1
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•  The accurate GGA for solids (cohesive energy/lattice constant).
   They are ALL very inaccurate for the atomization of molecules

•  MGGA_MS2 and SCAN are very accurate for the atomization of molecules

1
F. Tran et al., J. Chem. Phys. 144, 204120 (2016)

http://dx.doi.org/10.1063/1.4948636


Semilocal potential for band gap: modified Becke-Johnson

◮ Standard LDA and GGA functionals underestimate the band gap

◮ Hybrid and GW are much more accurate, but also much more
expensive

◮ A cheap alternative is to use the modified Becke-Johnson (mBJ)
potential:1

v
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mBJ is a MGGA potential

1
F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

http://dx.doi.org/10.1103/PhysRevLett.102.226401


Band gaps with mBJ
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See also F. Tran and P. Blaha, J. Phys. Chem. A 121, 3318 (2017)

http://dx.doi.org/10.1021/acs.jpca.7b02882


How to run a calculation with the mBJ potential?

1. init lapw (choose LDA or PBE)

2. init mbj lapw (create/modify files)

2.1 automatically done: case.in0 modified and case.inm vresp
created

2.2 run(sp) lapw -i 1 -NI (creates case.r2v and case.vrespsum)
2.3 save lapw

3. init mbj lapw and choose one of the parametrizations:

0: Original mBJ values1

1: New parametrization2

2: New parametrization for semiconductors2

3: Original BJ potential3

4. run(sp) lapw ...

1
F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

2
D. Koller et al., Phys. Rev. B 85, 155109 (2012)

3
A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006)

http://dx.doi.org/10.1103/PhysRevLett.102.226401
http://dx.doi.org/10.1103/PhysRevB.85.155109
http://dx.doi.org/10.1063/1.2213970


Input file case.in0: keywords for the xc-functional

The functional is specified at the 1st line of case.in0. Three
different ways:

1. Specify a global keyword for Ex, Ec, vx, vc:
◮ TOT XC NAME

2. Specify a keyword for Ex, Ec, vx, vc individually:
◮ TOT EX NAME1 EC NAME2 VX NAME3 VC NAME4

3. Specify keywords to use functionals from LIBXC1:
◮ TOT XC TYPE X NAME1 XC TYPE C NAME2

◮ TOT XC TYPE XC NAME

where TYPE is the family name: LDA, GGA or MGGA

1
M. A. L. Marques et al., Comput. Phys. Commun. 183, 2272 (2012)

http://www.tddft.org/programs/octopus/wiki/index.php/Libxc

http://dx.doi.org/10.1016/j.cpc.2012.05.007
http://www.tddft.org/programs/octopus/wiki/index.php/Libxc


Input file case.in0: examples

◮ PBE:
TOT XC PBE

or
TOT EX PBE EC PBE VX PBE VC PBE

or
TOT XC GGA X PBE XC GGA C PBE

◮ mBJ (with LDA for the xc-energy):
TOT XC MBJ

◮ MGGA MS2:
TOT XC MGGA MS 0.504 0.14601 4.0

︸ ︷︷ ︸

κ,c,b

All available functionals are listed in tables of the user’s guide and in

$WIENROOT/SRC lapw0/xc funcs.h for LIBXC (if installed)



Methods for van der Waals systems
Problem with semilocal and hybrid functionals:

◮ They do not include London dispersion interactions =⇒
Results are very often qualitatively wrong for van der Waals
systems

Two types of dispersion terms added to the DFT total energy:

◮ Pairwise term (cheap)1:

E
PW
c,disp = −

∑

A<B

∑

n=6,8,10,...

f
damp
n (RAB)

CAB
n

Rn
AB

◮ Nonlocal term (more expensive than semilocal)2:

E
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∫ ∫

ρ(r1)Φ(r1, r2)ρ(r2)d
3
r1d

3
r2

1
S. Grimme, J. Comput. Chem. 25, 1463 (2004)

2
M. Dion et al., Phys. Rev. Lett. 92, 246401 (2004)

http://dx.doi.org/10.1002/jcc.20078
http://dx.doi.org/10.1103/PhysRevLett.92.246401


DFT-D3 pairwise method1

◮ Features:
◮ Cheap
◮ CAB

n depend on positions of the nuclei (via coordination
number)

◮ Energy and forces (minimization of internal parameters)
◮ 3-body term available (more important for solids than

molecules)

◮ Installation:
◮ Not included in WIEN2k
◮ Download and compile the DFTD3 package from

https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/

copy the dftd3 executable in $WIENROOT

◮ Usage:
◮ Input file case.indftd3 (if not present a default one is copied

automatically by x lapw)
◮ run(sp) lapw -dftd3 . . .
◮ case.scfdftd3 is included in case.scf

1
S. Grimme et al., J. Chem. Phys. 132, 154104 (2010)

https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/
http://dx.doi.org/10.1063/1.3382344


DFT-D3 method: input file case.indftd3

Default (and recommended) input file:

method bj damping function f
damp
n

func default the one in case.in0∗

grad yes forces
pbc yes periodic boundary conditions
abc yes 3-body term
cutoff 95 interaction cutoff
cnthr 40 coordination number cutoff
num no numerical gradient

∗default will work for PBE, PBEsol, BLYP and TPSS. For other

functionals, the functional name has to be specified (see dftd3.f of

DFTD3 package)



DFT-D3 method: hexagonal BN1
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1
F. Tran et al., J. Chem. Phys. 144, 204120 (2016)

http://dx.doi.org/10.1063/1.4948636


Nonlocal vdW functionals

E
NL
c,disp =

1

2

∫ ∫

ρ(r1)Φ(r1, r2)ρ(r2)d
3
r1d

3
r2

Kernels Φ proposed in the literature:

◮ DRSLL1 (vdW-DF1, optB88-vdW, vdW-DF-cx0, . . . ):

◮ Derived from ACFDT
◮ Contains no adjustable parameter

◮ LMKLL2 (vdW-DF2, rev-vdW-DF2):

◮ Zab in DRSLL multiplied by 2.222

◮ rVV103,4:

◮ Different analytical form as DRSLL
◮ Parameters: b = 6.3 and C = 0.0093

◮ rVV10L5:

◮ Parameters: b = 10.0 and C = 0.0093

1
M. Dion et al., Phys. Rev. Lett. 92, 246401 (2004)

2
K. Lee et al., Phys. Rev. B 82, 081101(R) (2010)

3
O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 133, 244103 (2010)

4
R. Sabatini et al., Phys. Rev. B 87, 041108(R) (2013)

5
H. Peng and J. P. Perdew, Phys. Rev. B 95, 081105(R) (2017)

http://dx.doi.org/10.1103/PhysRevLett.92.246401
http://dx.doi.org/10.1103/PhysRevB.82.081101
http://dx.doi.org/10.1063/1.3521275
http://dx.doi.org/10.1103/PhysRevB.87.041108
http://dx.doi.org/10.1103/PhysRevB.95.081105


Nonlocal vdW functionals in WIEN2k1

◮ Features:

◮ Use the fast FFT-based method of Román-Pérez and Soler2:

1. ρ is smoothed close to the nuclei (density cutoff ρc) → ρs.
The smaller ρc is, the smoother ρs is.

2. ρs is expanded in plane waves in the whole unit cell.
Gmax is the plane-wave cutoff of the expansion.

◮ Most vdW functionals from the literature are available (see
user’s guide)

◮ Usage:

◮ Input file case.innlvdw ($WIENROOT/SRC templates)
◮ run(sp) lapw -nlvdw . . .
◮ case.scfnlvdw is included in case.scf

◮ Problem:

◮ prepare xsf may hang

1
F. Tran et al., Phys. Rev. B 96, 054103 (2017)

2
G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009)

http://dx.doi.org/10.1103/PhysRevB.96.054103
http://dx.doi.org/10.1103/PhysRevLett.103.096102


Nonlocal vdW functionals: the input file case.innlvdw

1 kernel type
−0.8491 parameters of the kernel
20 plane-wave expansion cutoff GMAX
0.3 density cutoff rhoc
T calculation of the potential (T or F)

line 1 : “1” for DRSLL and LMKLL or “2” for rVV10
line 2 : “-0.8491” for DRSLL, “-1.887” for LMKLL or “6.3 0.0093” for rVV10
line 3 : Use Gmax = 25 or 30 in case of numerical noise
line 4 : Eventually repeat with larger ρc (e.g, 0.6)
line 5 : Potential is necessary only for forces. Save computational time if set to “F”



Nonlocal vdW functionals: convergence with ρc and Gmax
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Strongly correlated electrons
Problem with semilocal functionals:

◮ They give qualitatively wrong results for solids which contain
localized 3d or 4f electrons

◮ The band gap is too small (zero in FeO!)
◮ The magnetic moment is too small (zero in YBa2Cu3O6!)
◮ Wrong electronic configuration

Why?

◮ The strong on-site correlations are not correctly accounted for
by semilocal functionals.

(Partial) solution to the problem:

◮ Combine semilocal functionals with Hartree-Fock theory:
◮ DFT+U

◮ Hybrid

Even better:

◮ LDA+DMFT (DMFT codes using WIEN2k orbitals as input
exist)



On-site DFT+U and hybrid methods in WIEN2k

◮ For solids, the hybrid functionals are computationally very
expensive.

◮ In WIEN2k the on-site DFT+U1 and on-site hybrid2,3

methods are available. These methods are approximations of
the Hartree-Fock/hybrid methods

◮ Applied only inside atomic spheres of selected atoms and
electrons of a given angular momentum ℓ.

On-site methods → As cheap as LDA/GGA.

1
V. I. Anisimov et al., Phys. Rev. B 44, 943 (1991)

2
P. Novák et al., Phys. Stat. Sol. (b) 243, 563 (2006)

3
F. Tran et al., Phys. Rev. B 74, 155108 (2006)

http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1002/pssb.200541371
http://dx.doi.org/10.1103/PhysRevB.74.155108


DFT+U and hybrid exchange-correlation functionals
The exchange-correlation functional is

E
DFT+U/hybrid
xc = E

DFT
xc [ρ] + E

onsite[nmm′ ]

where nmm′ is the density matrix of the correlated electrons

◮ For DFT+U both exchange and Coulomb are corrected:

E
onsite = E

HF
x + ECoul

︸ ︷︷ ︸

correction

−E
DFT
x − E

DFT
Coul

︸ ︷︷ ︸

double counting

There are several versions of the double-counting term

◮ For the hybrid methods only exchange is corrected:

E
onsite = αEHF

x
︸ ︷︷ ︸

corr.

−αELDA
x

︸ ︷︷ ︸

d. count.

where α is a parameter ∈ [0, 1]



How to run DFT+U and on-site hybrid calculations?

1. Create the input files:
◮ case.inorb and case.indm for DFT+U

◮ case.ineece for on-site hybrid functionals (case.indm created
automatically):

2. Run the job (can only be run with runsp lapw):
◮ LDA+U: runsp lapw -orb . . .
◮ Hybrid: runsp lapw -eece . . .

For a calculation without spin-polarization (ρ↑ = ρ↓):
runsp c lapw -orb/eece . . .



Input file case.inorb

LDA+U applied to the 4f electrons of atoms No. 2 and 4:

1 2 0 nmod, natorb, ipr

PRATT,1.0 mixmod, amix

2 1 3 iatom, nlorb, lorb

4 1 3 iatom, nlorb, lorb

1 nsic (LDA+U(SIC) used)

0.61 0.07 U J (Ry)

0.61 0.07 U J (Ry)

nsic=0 for the AMF method (less strongly correlated electrons)
nsic=1 for the SIC method
nsic=2 for the HMF method

Review article : E. R. Ylvisaker et al., Phys. Rev. B 79, 035103 (2009)

http://dx.doi.org/10.1103/PhysRevB.79.035103


Input file case.ineece

On-site hybrid functional PBE0 applied to the 4f electrons of
atoms No. 2 and 4:

-12.0 2 emin, natorb

2 1 3 iatom, nlorb, lorb

4 1 3 iatom, nlorb, lorb

HYBR HYBR/EECE

0.25 fraction of exact exchange



SCF cycle of DFT+U in WIEN2k

lapw0 → vDFT
xc,σ + vee + ven (case.vspup(dn), case.vnsup(dn))

orb -up → v
↑

mm′ (case.vorbup)

orb -dn → v
↓

mm′ (case.vorbdn)

lapw1 -up -orb → ψ
↑

nk, ǫ
↑

nk (case.vectorup, case.energyup)

lapw1 -dn -orb → ψ
↓

nk, ǫ
↓

nk (case.vectordn, case.energydn)

lapw2 -up → ρ
↑

val (case.clmvalup)

lapw2 -dn → ρ
↓

val (case.clmvaldn)

lapwdm -up → n
↑

mm′ (case.dmatup)

lapwdm -dn → n
↓

mm′ (case.dmatdn)

lcore -up → ρ↑core (case.clmcorup)

lcore -dn → ρ↓core (case.clmcordn)

mixer → mixed ρσ and nσ
mm′



Hybrid functionals

◮ On-site hybrid functionals can be applied only to localized electrons

◮ Full hybrid functionals are necessary (but expensive) for solids with

delocalized electrons (e.g., in sp-semiconductors)

Two types of full hybrid functionals available in WIEN2k1:

◮ unscreened:

Exc = E
DFT
xc + α

(
E
HF
x − E

DFT
x

)

◮ screened (short-range), 1
|r−r′| →

e−λ|r−r′|

|r−r′| :

Exc = E
DFT
xc + α

(
E
SR−HF
x − E

SR−DFT
x

)

screening leads to faster convergence with k-points sampling

1
F. Tran and P. Blaha, Phys. Rev. B 83, 235118 (2011)

http://dx.doi.org/10.1103/PhysRevB.83.235118


Hybrid functionals: technical details

◮ 10-1000 times more expensive than LDA/GGA

◮ k-point and MPI parallelization

◮ Approximations to speed up the calculations:
◮ Reduced k-mesh for the HF potential. Example:

For a calculation with a 12× 12× 12 k-mesh, the reduced
k-mesh for the HF potential can be:
6× 6× 6, 4× 4× 4, 3× 3× 3, 2× 2× 2 or 1× 1× 1

◮ Non-self-consistent calculation of the band structure

◮ Underlying functionals for unscreened and screend hybrid:
◮ LDA
◮ PBE
◮ WC
◮ PBEsol
◮ B3PW91
◮ B3LYP

◮ Use run bandplothf lapw for band structure



Hybrid functionals: input file case.inhf

Example for YS-PBE0 (similar to HSE06 from Heyd, Scuseria and Ernzerhof1)

0.25 fraction α of HF exchange

T screened (T, YS-PBE0) or unscreened (F, PBE0)

0.165 screening parameter λ
20 number of bands for the 2nd Hamiltonian

6 GMAX

3 lmax for the expansion of orbitals

3 lmax for the product of two orbitals

1d-3 radial integrals below this value neglected

Important: The computational time will depend strongly on the
number of bands, GMAX, lmax and the number of k-points

1
A. V. Krukau et al., J. Chem. Phys. 125, 224106 (2006)

http://dx.doi.org/10.1063/1.2404663


How to run hybrid functionals?

1. init lapw

2. Recommended: run(sp) lapw for the semilocal functional

3. save lapw

4. init hf lapw (this will create/modify input files)

4.1 adjust case.inhf according to your needs
4.2 reduced k-mesh for the HF potential? Yes or no
4.3 specify the k-mesh

5. run(sp) lapw -hf (-redklist) (-diaghf) ...



SCF cycle of hybrid functionals in WIEN2k

lapw0 -grr → vDFT
x (case.r2v), αEDFT

x (:AEXSL)

lapw0 → vDFT
xc + vee + ven (case.vsp, case.vns)

lapw1 → ψDFT
nk , ǫDFT

nk (case.vector, case.energy)

lapw2 →
∑

nk ǫ
DFT
nk (:SLSUM)

hf → ψnk, ǫnk (case.vectorhf, case.energyhf)

lapw2 -hf → ρval (case.clmval)

lcore → ρcore (case.clmcor)

mixer → mixed ρ



Some recommendations

Before using a functional:

◮ read a few papers about the functional in order to know
◮ for which properties or types of solids it is supposed to be

reliable
◮ if it is adapted to your problem

◮ figure out if you have enough computational ressources
◮ hybrid functionals and GW require (substantially) more

computational ressources (and patience)


