Methods available in WIEN2k for the treatment of exchange and correlation effects

F. Tran

Institute of Materials Chemistry Vienna University of Technology, A-1060 Vienna, Austria

24th WIEN2k workshop, 18-22 September 2017 Vienna University of Technology, Vienna, Austria

 \equiv

 $2Q$

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

Outline of the talk

- \blacktriangleright Introduction
- \blacktriangleright Semilocal functionals:
	- \triangleright GGA and MGGA
	- \triangleright mBJ potential (for band gap)
	- \blacktriangleright Input file case.in0
- ▶ Methods for van der Waals systems:
	- \triangleright DFT-D3
	- \triangleright Nonlocal functionals
- \triangleright On-site methods for strongly correlated d and f electrons:

KORK ERKER ER AGA

- \triangleright DFT+U
- \blacktriangleright Hybrid functionals
- \blacktriangleright Hybrid functionals

Total energy in Kohn-Sham $DFT¹$

$$
E_{\text{tot}} = \underbrace{\frac{1}{2} \sum_{i} \int |\nabla \psi_i(\mathbf{r})|^2 d^3 r}_{T_{\text{s}} + \underbrace{\frac{1}{2} \int \int \frac{\rho(\mathbf{r}) \rho(\mathbf{r}^{\prime})}{|\mathbf{r} - \mathbf{r}^{\prime}|} d^3 r d^3 r^{\prime}}_{E_{\text{ee}}} + \underbrace{\frac{1}{2} \sum_{\substack{A, B \\ A \neq B}} \frac{Z_A Z_B}{|R_A - R_B|} + E_{\text{xc}}}_{E_{\text{nn}}} + E_{\text{xc}}
$$

- \blacktriangleright $\tau_{\rm s}$: kinetic energy of the non-interacting electrons
- $\triangleright E_{\text{ee}}$: repulsive electron-electron electrostatic Coulomb energy
- \triangleright E_{en} : attractive electron-nucleus electrostatic Coulomb energy
- \triangleright E_{nn} : repulsive nucleus-nucleus electrostatic Coulomb energy

KORK EX KEY ARY YOUR

 $\blacktriangleright E_{\rm xc} = E_{\rm x} + E_{\rm c}$: exchange-correlation energy Approximations for E_{xc} have to be used in practice \implies The reliability of the results depends mainly on E_{xc}

 1 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

Approximations for $E_{\rm xc}$ (Jacob's ladder $^1)$

 $E_{\rm xc} = \int \epsilon_{\rm xc}(\mathbf{r}) d^3r$

The accuracy, but also the computational cost, increase when climbing up the ladder

KORK ERKER ER AGA

 $^{\text{1}}$ J. P. Perdew *et al.*, J. Chem. Phys. 123, 062201 (2005)

Kohn-Sham Schrödinger equations

Minimization of E_{tot} leads to

$$
\left(-\frac{1}{2}\nabla^2 + v_{\rm ee}(\mathbf{r}) + v_{\rm en}(\mathbf{r}) + \hat{v}_{\rm xc}(\mathbf{r})\right)\psi_i(\mathbf{r}) = \epsilon_i\psi_i(\mathbf{r})
$$

Two types of $\hat{v}_{\rm xc}$.

- Multiplicative: $\hat{v}_{\text{xc}} = \delta E_{\text{xc}} / \delta \rho = v_{\text{xc}}$ (KS method)
	- \blacktriangleright LDA
	- \triangleright GGA

► Non-multiplicative: $\hat{v}_{\text{xc}} = (1/\psi_i) \delta E_{\text{xc}} / \delta \psi_i^* = v_{\text{xc},i}$ (generalized KS¹)

A DIA K RIA K E A CHA K H A VIO

- ► Hartree-Fock
- \triangleright LDA+U
- ▶ Hybrid (mixing of GGA and Hartree-Fock)
- \blacktriangleright MGGA
- ▶ Self-interaction corrected (Perdew-Zunger)

 $^{\text{1}}$ A. Seidl *et al.*, Phys. Rev. B $\textbf{53}, \, 3764 \ (1996)$

Semilocal functionals: GGA

$$
\epsilon_{\rm xc}^{\rm GGA}(\rho,\nabla\rho)=\epsilon_{\rm x}^{\rm LDA}(\rho)\mathcal{F}_{\rm xc}(r_{\rm s},s)
$$

where F_{xc} is the enhancement factor and

$$
r_s = \frac{1}{\left(\frac{4}{3}\pi\rho\right)^{1/3}}
$$
 (Wigner-Seitz radius)

$$
s = \frac{|\nabla\rho|}{2\left(3\pi^2\right)^{1/3}\rho^{4/3}}
$$
 (inhomogeneity parameter)

There are two types of GGA:

- \triangleright Semi-empirical: contain parameters fitted to accurate (i.e., experimental) data.
- \triangleright Ab initio: All parameters were determined by using mathematical conditions obeyed by the exact functional.

Semilocal functionals: trends with GGA

Exchange enhancement factor $F_x(s) = \epsilon_x^{\text{GGA}}/\epsilon_x^{\text{LDA}}$

Construction of an universal GGA: A failure

Test of functionals on 44 solids¹

KORK ERKER ADAM DE KORA

¹ F. Tran et al.[, J. Chem. Phys.](http://dx.doi.org/10.1063/1.4948636) 144, 204120 (2016)

Semilocal functionals: meta-GGA

$$
\epsilon_{\rm xc}^{\rm MGGA}(\rho,\nabla\rho,t)=\epsilon_{\rm xc}^{\rm LDA}(\rho)\mathcal{F}_{\rm xc}(r_{\rm s},s,\alpha)
$$

- $\triangleright \ \alpha = \frac{t-t_{\mathrm{W}}}{t_{\mathrm{DE}}}$ $t_{\rm TF}$
	- $\sim \alpha = 1$ (region of constant electron density)
	- $\sim \alpha = 0$ (in one- and two-electron regions very close and very far from nuclei)
	- $\triangleright \alpha \gg 1$ (region between closed shell atoms)
- =⇒ MGGA functionals are more flexible

Example: SCAN¹ is

- ► as good as the best GGA for atomization energies of molecules
- ► as good as the best GGA for lattice constant of solids

¹ J. Sun et al[., Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.115.036402) 115, 036402 (2015)

Semilocal functionals: meta-GGA

$$
F_{\rm x}(s,\alpha) = \epsilon_{\rm x}^{\rm MGGA}/\epsilon_{\rm x}^{\rm LDA}
$$

 299

Semilocal functionals: MGGA MS2 and SCAN

Test of functionals on 44 solids¹

1 F. Tran et al.[, J. Chem. Phys.](http://dx.doi.org/10.1063/1.4948636) 144, 204120 (2016)

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$ \equiv ΩQ

Semilocal potential for band gap: modified Becke-Johnson

- ▶ Standard LDA and GGA functionals underestimate the band gap
- ▶ Hybrid and GW are much more accurate, but also much more expensive
- \triangleright A cheap alternative is to use the modified Becke-Johnson (mBJ) $potential$:¹

$$
v_{\rm x}^{\rm mBJ}(\mathbf{r}) = c v_{\rm x}^{\rm BR}(\mathbf{r}) + (3c - 2) \frac{1}{\pi} \sqrt{\frac{5}{6}} \sqrt{\frac{t(\mathbf{r})}{\rho(\mathbf{r})}}
$$

where $\mathsf{v}_{\mathrm{x}}^{\mathrm{BR}}$ is the Becke-Roussel potential, t is the kinetic-energy density and c is given by

$$
c = \alpha + \beta \left(\frac{1}{V_{\text{cell}}} \int\limits_{\text{cell}} \frac{|\nabla \rho(\mathbf{r})|}{\rho(\mathbf{r})} d^3 r\right)^p
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

mBJ is a MGGA potential

 $^{\text{1}}$ [F. Tran and P. Blaha, Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.102.226401) 102, 226401 (2009)

Band gaps with mBJ

See also [F. Tran and P. Blaha, J. Phys. Chem. A](http://dx.doi.org/10.1021/acs.jpca.7b02882) [121](#page-11-0)[, 3](#page-13-0)[3](#page-11-0)[18](#page-12-0) [\(](#page-13-0)[20](#page-0-0)[17\)](#page-36-0)Þ $2Q$

How to run a calculation with the mBJ potential?

- 1. init lapw (choose LDA or PBE)
- 2. int_m bj_lapw (create/modify files)
	- 2.1 automatically done: case.in0 modified and case.inm_vresp created
	- 2.2 run(sp)_lapw -i 1 -NI (creates case.r2v and case.vrespsum)
	- 2.3 save lapw
- 3. init_mbj_lapw and choose one of the parametrizations:
	- 0: Original mBJ values $¹$ </sup>
	- 1: New parametrization²
	- 2: New parametrization for semiconductors²
	- 3: Original BJ potential 3

4. $run(sp)$ lapw ...

 $^{\text{1}}$ [F. Tran and P. Blaha, Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.102.226401) 102, 226401 (2009)

² D. Koller et al., Phys. Rev. B 85[, 155109 \(2012\)](http://dx.doi.org/10.1103/PhysRevB.85.155109)

³ [A. D. Becke and E. R. Johnson, J. Chem. Phys.](http://dx.doi.org/10.1063/1.2213970) 124, 221101 (2006)

Input file case.in0: keywords for the xc-functional

The functional is specified at the 1st line of case.in0. Three different ways:

- 1. Specify a global keyword for E_x , E_c , v_x , v_c :
	- \triangleright TOT XC NAME
- 2. Specify a keyword for E_x , E_c , v_x , v_c individually:
	- ► TOT EX NAME1 EC NAME2 VX NAME3 VC NAME4
- 3. Specify keywords to use functionals from ${\sf LIBXC^1}$:
	- ▶ TOT XC_TYPE X_NAME1 XC_TYPE C_NAME2
	- ► TOT XC TYPE XC NAME

where TYPE is the family name: LDA, GGA or MGGA

KORK ERKER AD A DAG

<http://www.tddft.org/programs/octopus/wiki/index.php/Libxc>

 $¹$ M. A. L. Marques et al[., Comput. Phys. Commun.](http://dx.doi.org/10.1016/j.cpc.2012.05.007) 183, 2272 (2012)</sup>

Input file case.in0: examples

 \triangleright PBE: TOT XC PBE or TOT EX PBE EC PBE VX PBE VC PBE or TOT XC GGA X PBE XC GGA C PBE \triangleright mBJ (with LDA for the xc-energy): TOT XC MBJ \blacktriangleright MGGA MS2:

TOT XC MGGA MS 0.504 0.14601 4.0 ${\kappa, c, b}$

All available functionals are listed in tables of the user's guide and in \$WIENROOT/SRC lapw0/xc funcs.h for LIBXC (if installed)

A DIA K RIA K E A CHA K H A VIO

Methods for van der Waals systems

Problem with semilocal and hybrid functionals:

 \triangleright They do not include London dispersion interactions \Longrightarrow Results are very often qualitatively wrong for van der Waals systems

Two types of dispersion terms added to the DFT total energy:

Pairwise term $(cheap)^1$:

$$
E_{\rm c,disp}^{\rm PW} = -\sum_{A
$$

 \blacktriangleright Nonlocal term (more expensive than semilocal)²:

$$
E_{\text{c,disp}}^{\text{NL}} = \frac{1}{2} \int \int \rho(\mathbf{r}_1) \Phi(\mathbf{r}_1, \mathbf{r}_2) \rho(\mathbf{r}_2) d^3 r_1 d^3 r_2
$$

A DIA K RIA K E A CHA K H A VIO

1 [S. Grimme, J. Comput. Chem.](http://dx.doi.org/10.1002/jcc.20078) 25, 1463 (2004)

 2^2 M. Dion et al[., Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.92.246401) 92, 246401 (2004)

$DFT-D3$ pairwise method¹

- ► Features:
	- \blacktriangleright Cheap
	- \blacktriangleright C_n^{AB} depend on positions of the nuclei (via coordination number)
	- \triangleright Energy and forces (minimization of internal parameters)
	- \triangleright 3-body term available (more important for solids than molecules)
- \blacktriangleright Installation:
	- \triangleright Not included in WIFN2k
	- ▶ Download and compile the DFTD3 package from <https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/> copy the dftd3 executable in \$WIENROOT
- ► Usage:
	- \triangleright Input file case.indftd3 (if not present a default one is copied automatically by x_lapw)
	- run(sp)_lapw -dftd3 \ldots
	- \triangleright case.scfdftd3 is included in case.scf

^{1&}lt;br>S. Grimme et al[., J. Chem. Phys.](http://dx.doi.org/10.1063/1.3382344) 132, 154104 (2010)

DFT-D3 method: input file case.indftd3

Default (and recommended) input file:

[∗]default will work for PBE, PBEsol, BLYP and TPSS. For other functionals, the functional name has to be specified (see dftd3.f of DFTD3 package)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

DFT-D3 method: hexagonal BN¹

1 F. Tran et al.[, J. Chem. Phys.](http://dx.doi.org/10.1063/1.4948636) 144, 204120 (2016)

イロト 不優 トメ 差 トメ 差 ト È 299

Nonlocal vdW functionals

$$
E_{\rm c,disp}^{\rm NL}=\frac{1}{2}\int\int\rho(\textbf{r}_1)\Phi(\textbf{r}_1,\textbf{r}_2)\rho(\textbf{r}_2)d^3r_1d^3r_2
$$

KORK REPARE PROPERTY

Kernels Φ proposed in the literature:

- \blacktriangleright DRSLL¹ (vdW-DF1, optB88-vdW, vdW-DF-cx0, ...):
	- ► Derived from ACFDT
	- \triangleright Contains no adjustable parameter
- ▶ LMKLL² (vdW-DF2, rev-vdW-DF2):
	- \blacktriangleright Z_{ab} in DRSLL multiplied by 2.222
- \blacktriangleright rVV10^{3,4}:
	- ▶ Different analytical form as DRSLL
	- ▶ Parameters: $b = 6.3$ and $C = 0.0093$
- \blacktriangleright rVV10L⁵:
	- Parameters: $b = 10.0$ and $C = 0.0093$

 1 M. Dion et al[., Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.92.246401) 92, 246401 (2004)

 2 K. Lee *et al.*, Phys. Rev. B **82**[, 081101\(R\) \(2010\)](http://dx.doi.org/10.1103/PhysRevB.82.081101)

³ [O. A. Vydrov and T. Van Voorhis, J. Chem. Phys.](http://dx.doi.org/10.1063/1.3521275) 133, 244103 (2010)

⁴ R. Sabatini et al., Phys. Rev. B 87[, 041108\(R\) \(2013\)](http://dx.doi.org/10.1103/PhysRevB.87.041108)

⁵ [H. Peng and J. P. Perdew, Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.95.081105) 95, 081105(R) (2017)

Nonlocal vdW functionals in WIEN2 k^1

▶ Features:

- ▶ Use the fast FFT-based method of Román-Pérez and Soler²:
	- 1. ρ is smoothed close to the nuclei (density cutoff ρ_c) $\rightarrow \rho_s$. The smaller ρ_c is, the smoother ρ_s is.
	- 2. ρ_s is expanded in plane waves in the whole unit cell. G_{max} is the plane-wave cutoff of the expansion.
- \triangleright Most vdW functionals from the literature are available (see user's guide)
- ► Usage:
	- ▶ Input file case.innlvdw (\$WIENROOT/SRC_templates)
	- run(sp) lapw -nlvdw \dots
	- \triangleright case.scfnlydw is included in case.scf

▶ Problem:

 \triangleright prepare xsf may hang

¹ F. Tran et al., Phys. Rev. B 96[, 054103 \(2017\)](http://dx.doi.org/10.1103/PhysRevB.96.054103)

 2 G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. 103 , 096 $102 \ (2009)$ $102 \ (2009)$

Nonlocal vdW functionals: the input file case.innlvdw

line 1: "1" for DRSLL and LMKLL or "2" for rVV10

- line 2 : "-0.8491" for DRSLL, "-1.887" for LMKLL or "6.3 0.0093" for rVV10
- line 3 : Use $G_{\text{max}} = 25$ or 30 in case of numerical noise
- line 4 : Eventually repeat with larger ρ_c (e.g, 0.6)
- line 5 : Potential is necessary only for forces. Save computational time if set to "F"

KORK ERKER ER AGA

Nonlocal vdW functionals: convergence with ρ_c and G_{max}

 \rightarrow \equiv \rightarrow 299 **K ロ ト K 何 ト K ヨ ト** 目

Strongly correlated electrons

Problem with semilocal functionals:

- \triangleright They give qualitatively wrong results for solids which contain localized 3d or 4f electrons
	- \triangleright The band gap is too small (zero in FeO!)
	- \triangleright The magnetic moment is too small (zero in YBa₂Cu₃O₆!)
	- \triangleright Wrong electronic configuration

Why?

▶ The strong on-site correlations are not correctly accounted for by semilocal functionals.

(Partial) solution to the problem:

- ▶ Combine semilocal functionals with Hartree-Fock theory:
	- \triangleright DFT+U
	- ► Hybrid

Even better:

 \triangleright LDA+DMFT (DMFT codes using WIEN2k orbitals as input exist)**K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^**

On-site $DFT+U$ and hybrid methods in WIEN2k

- \triangleright For solids, the hybrid functionals are computationally very expensive.
- ► In WIEN2k the on-site DFT $+U^1$ and on-site hybrid^{2,3} methods are available. These methods are approximations of the Hartree-Fock/hybrid methods

▶ Applied only inside atomic spheres of selected atoms and electrons of a given angular momentum ℓ .

On-site methods \rightarrow As cheap as LDA/GGA.

- 1 V. I. Anisimov *et al.*[, Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.44.943) 44, 943 (1991)
- 2 P. Novák *et al.*[, Phys. Stat. Sol. \(b\)](http://dx.doi.org/10.1002/pssb.200541371) 243, 563 (2006)
- 3 F. Tran et al., Phys. Rev. B 74[, 155108 \(2006\)](http://dx.doi.org/10.1103/PhysRevB.74.155108)

 $DFT+U$ and hybrid exchange-correlation functionals

The exchange-correlation functional is

$$
E_{\rm xc}^{\rm DFT+U/hybrid}=E_{\rm xc}^{\rm DFT}[\rho]+E^{\rm onsite}[n_{mm'}]
$$

where $n_{mm'}$ is the density matrix of the correlated electrons

 \triangleright For DFT+U both exchange and Coulomb are corrected:

$$
E^{\text{onsite}} = \underbrace{E_x^{\text{HF}} + E_{\text{Coul}}}_{\text{correction}} - \underbrace{E_x^{\text{DFT}} - E_{\text{Coul}}^{\text{DFT}}}{\text{double counting}}
$$

There are several versions of the double-counting term

 \triangleright For the hybrid methods only exchange is corrected:

$$
E^{\text{onsite}} = \underbrace{\alpha E_x^{\text{HF}}}_{\text{corr.}} - \underbrace{\alpha E_x^{\text{LDA}}}_{\text{d. count.}}
$$

A DIA K RIA K E A SA K H A K RIA K LE A SA CA

where α is a parameter $\in [0,1]$

How to run $DFT+U$ and on-site hybrid calculations?

- 1. Create the input files:
	- \triangleright case.inorb and case.indm for DFT+U
	- ► case.ineece for on-site hybrid functionals (case.indm created automatically):

A DIA K RIA K E A SA K H A K RIA K LE A SA CA

- 2. Run the job (can only be run with runsp_lapw):
	- \blacktriangleright LDA+U: runsp_lapw -orb ...
	- \blacktriangleright Hybrid: runsp_lapw -eece ...

For a calculation without spin-polarization $(\rho_{\uparrow} = \rho_{\downarrow})$: runsp c lapw -orb/eece \dots

Input file case.inorb

 $LDA+U$ applied to the 4f electrons of atoms No. 2 and 4:

nsic=0 for the AMF method (less strongly correlated electrons) nsic=1 for the SIC method nsic=2 for the HMF method

Review article : E. R. Ylvisaker et al., Phys. Rev. B 79[, 035103 \(2009\)](http://dx.doi.org/10.1103/PhysRevB.79.035103)

On-site hybrid functional PBE0 applied to the 4f electrons of atoms No. 2 and 4:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

SCF cycle of $DFT+U$ in WIEN2k

Hybrid functionals

- ▶ On-site hybrid functionals can be applied only to localized electrons
- \blacktriangleright Full hybrid functionals are necessary (but expensive) for solids with delocalized electrons (e.g., in sp-semiconductors)

Two types of full hybrid functionals available in WIEN2k $^1\colon$

◮ unscreened:

$$
\textit{E}_{\rm xc} = \textit{E}_{\rm xc}^{\rm DFT} + \alpha \left(\textit{E}_{\rm x}^{\rm HF} - \textit{E}_{\rm x}^{\rm DFT}\right)
$$

► screened (short-range), $\frac{1}{|\mathbf{r}-\mathbf{r}'|} \rightarrow \frac{e^{-\lambda|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|}$ $\frac{|r-r'|}{|r-r'|}$:

$$
\textit{E}_{\rm xc} = \textit{E}_{\rm xc}^{\rm DFT} + \alpha \left(\textit{E}_{\rm x}^{\rm SR-HF} - \textit{E}_{\rm x}^{\rm SR-DFT}\right)
$$

screening leads to faster convergence with **k**-points sampling

 1 [F. Tran and P. Blaha, Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.83.235118) 83, 235118 (2011)

Hybrid functionals: technical details

- \triangleright 10-1000 times more expensive than LDA/GGA
- \triangleright **k**-point and MPI parallelization
- \blacktriangleright Approximations to speed up the calculations:
	- \triangleright Reduced **k**-mesh for the HF potential. Example: For a calculation with a $12 \times 12 \times 12$ k-mesh, the reduced k-mesh for the HF potential can be: $6 \times 6 \times 6$, $4 \times 4 \times 4$, $3 \times 3 \times 3$, $2 \times 2 \times 2$ or $1 \times 1 \times 1$

- \triangleright Non-self-consistent calculation of the band structure
- ▶ Underlying functionals for unscreened and screend hybrid:
	- \blacktriangleright LDA
	- ► PBE
	- ► WC
	- ► PBEsol
	- \blacktriangleright B3PW91
	- B B3LYP
- \triangleright Use run bandplothf lapw for band structure

Hybrid functionals: input file case.inhf

Example for YS-PBE0 (similar to HSE06 from Heyd, Scuseria and Ernzerhof $^1)$

Important: The computational time will depend strongly on the number of bands, GMAX, lmax and the number of k-points

 1 A. V. Krukau *et al.*, J. Chem. Phys. 125, 224106 (2006)

How to run hybrid functionals?

- 1. init lapw
- 2. Recommended: run(sp) lapw for the semilocal functional
- 3. save lapw
- 4. init_hf_lapw (this will create/modify input files)
	- 4.1 adjust case.inhf according to your needs
	- 4.2 reduced k-mesh for the HF potential? Yes or no

- 4.3 specify the k-mesh
- $\overline{5}$. run(sp)_lapw -hf (-redklist) (-diaghf) ...

SCF cycle of hybrid functionals in WIEN2k

Before using a functional:

- \triangleright read a few papers about the functional in order to know
	- \triangleright for which properties or types of solids it is supposed to be reliable
	- \triangleright if it is adapted to your problem
- \triangleright figure out if you have enough computational ressources
	- \triangleright hybrid functionals and GW require (substantially) more computational ressources (and patience)