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1. Wien2k SCF

Create a tutorial directory, e.g.

$ mkdir .../exerciseIX/GaAs-MLWF

Create the structure file using the following  
parameters:

2 atoms per primitive unit cell (Ga, As)

Lattice “F” = f.c.c.

Lattice parameters a0 = b0 = c0 = 10.683 Bohr

Positions: “0 0 0” for Ga and “1/4 1/4 1/4” for As; RMT’s - automatic 

You can use xcrysden to view the structure

$ xcrysden --wien_struct GaAs-MLWF.struct

Initialize Wien2k calculation (LDA, ~600 k-points ≣ 8x8x8 mesh)

$ init_lapw -b -vxc 5 -numk 600



Run regular SCF calculation using default convergence criteria

$ run_lapw

After SCF cycle is completed (~8 iterations). We proceed with the band 
structure

Prepare the list of k-point to be used for the band structure plot  
(GaAs-MLWF.klist_band file) using xcrysden

xcrysden File > Open Wien2k  
> Select k-path

Select points L(1/2 0 0), Γ(0 0 0),  
X(1/2 1/2 0), U(5/8 5/8 1/4), Γ
Set the total of 100 k-points along  
the path.

Save the list as  
GaAs-MLWF.klist_band

Solve eigenproblem on the k-path

$ x lapw1 -band
b*

c*

L
Γ

X

U



Get the Fermi energy

$ grep :FER *scf

For the band structure plot we will use the web interface (w2web). 
Create a new session and navigate to the current work directory.

w2web Tasks > Bandstructure

w2web Select  
“Edit GaAs-MLWF.insp”,  
insert the Fermi energy,  
save

w2web x spaghetti

w2web plot band structure

Your band structure will be similar  
to the one shown on the right.  
Our aim is to construct Wannier  
functions that reproduce this band 
structure including valence and some 
conduction bands. 



Before we proceed it is useful to determine the band indices for the 
region of interest

$ grep :BAN *scf2
:BAN00004:   4   -2.243815   -2.243263  2.00000000
:BAN00005:   5   -2.243645   -2.243122  2.00000000
:BAN00006:   6   -0.757612   -0.748891  2.00000000
:BAN00007:   7   -0.748891   -0.745972  2.00000000
:BAN00008:   8   -0.748891   -0.745814  2.00000000
:BAN00009:   9   -0.744948   -0.742764  2.00000000
:BAN00010:  10   -0.743426   -0.742046  2.00000000
:BAN00011:  11   -0.597475   -0.409554  2.00000000
:BAN00012:  12   -0.163606    0.342616  2.00000000
:BAN00013:  13    0.056810    0.342616  2.00000000
:BAN00014:  14    0.094852    0.342616  2.00000000
:BAN00015:  15    0.362856    0.675520  0.00000000
:BAN00016:  16    0.456595    0.748030  0.00000000
:BAN00017:  17    0.612912    1.080595  0.00000000
:BAN00018:  18    0.612912    1.080595  0.00000000
:BAN00019:  19    0.881735    1.145545  0.00000000
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2. Construction of Wannier functions

Prepare a separate directory

$ prepare_w2wdir GaAs-MLWF GaAs-WANN

$ cd GaAs-WANN

Initialize Wien2Wannier

$ init_w2w

Select 8x8x8 k-mesh (unshifted);

energy range (eV) -13  10 (this is not very critical);

band indices [Nmin Nmax] 11 18 (see the previous page);

for the projection we choose “1:s,p” and “2:s,p” (1 = Ga, 2 = As)

Important: when editing “GaAs-MLWF.win" replace “hr_plot” by 
“write_hr”



Get the vector file on the full Brillouin zone mesh

$ x lapw1

Compute matrix elements needed for Wannier90

$ x w2w

Run Wannier90

$ x wannier90

Verify the output

$ less GaAs-WANN.wout
... 
Final State
  WF centre and spread    1  (  0.000000,  0.000000,  0.000000 )     1.91743858
  WF centre and spread    2  (  0.000000,  0.000000,  0.000000 )     5.85659132
  WF centre and spread    3  (  0.000000,  0.000000,  0.000000 )     5.85659132
  WF centre and spread    4  (  0.000000,  0.000000,  0.000000 )     5.85659105
  WF centre and spread    5  (  1.413312,  1.413312,  1.413312 )     1.61146495
  WF centre and spread    6  (  1.413313,  1.413312,  1.413312 )     3.82142578
  WF centre and spread    7  (  1.413312,  1.413312,  1.413312 )     3.82142578
  WF centre and spread    8  (  1.413312,  1.413312,  1.413313 )     3.82142553
...

There you can see the position and spread of the WF’s, how they changed in the 
course of convergence. WF’s 1-4 are all positioned at the origin (atom 1), WF’s 5-8 
are centred at the 2nd atom (please check the coordinates)

spread r2

⇓



3. Post-processing

Plot the band structure

$ gnuplot

gnuplot> plot 'GaAs-WANN.spaghetti_ene' using 
($4/0.529189):5, 'GaAs-WANN_band.dat' with lines

+ original Wien2k 
band structure

- Band structure 
computed from 
Wannier functions



Plotting WF’s (can take a while). Get the template of an input file

$ cp $WIENROOT/SRC_templates/case.inwplot  
GaAs-WANN.inwplot

Edit “GaAs-WANN.inwplot”

Select origin “-1 -1 -1 1” and axis x, y, z  
“ 1 -1 -1 1” 
“-1  1 -1 1” 
“-1 -1  1 1” 
grid point mesh: 30 30 30  
“1” for the Wannier function index

Compute the 1st Wannier function on the mesh chosen

$ x wplot -wf 1

If you need to plot any other WF’s (2, 3, etc), just edit the option.

Convert the output of wplot into xcrysden format for plotting.

$ wplot2xsf



Visualize with xcrysden (instructions on the next page)



$ xcrysden --xsf GaAs-WANN_1.xsf

xcrysden Tools > Data Grid > OK

Check “render +/- isovalue”

Play with the settings. You will get a spherical (s-like) WF centred at the 
origin.

The second WF resamples p-orbital (you can get it by editing “GaAs-
WANN.inwplot”, re-run “x wplot” and “wplot2xsf”). The new file 
should be called GaAs-WANN_2.xsf

WF #1 WF #2

Note different colours 
of the WF lobes



Wannier Hamiltonian (similar to LCAO)

$ less GaAs-WANN_hr.dat
...
    0    0    0    1    1   -4.335108    0.000000
    0    0    0    2    1   -0.000001    0.000000
    0    0    0    3    1    0.000000    0.000000
    0    0    0    4    1   -0.000001    0.000000
    0    0    0    5    1   -1.472358    0.000000
    0    0    0    6    1   -1.157088    0.000000
    0    0    0    7    1   -1.157088    0.000000
    0    0    0    8    1   -1.157088    0.000000
...

Determine on site energies Es and Ep for Ga and As and compare them 
to those suggested by Harrison (note: only their relative differences are 
important)

From Harrison’s solid state tables:
Ep(Ga) - Es(Ga) = 5.9 eV
Ep(As) - Es(As) = 9.9 eV
Ep(Ga) - Ep(As) = 3.3 eV

Home
unit cell

Matrix element (eV)
s1|H|s1 = Es1

|s1s1|

no imag. part 
of the matrix 
element

no on-site 
hopping between 
different orbitals



Wannier Hamiltonian (cont.)
...
    0    0    0    1    1   -4.335108    0.000000
    0    0    0    2    1   -0.000001    0.000000
    0    0    0    3    1    0.000000    0.000000
    0    0    0    4    1   -0.000001    0.000000
    0    0    0    5    1   -1.472358    0.000000
    0    0    0    6    1   -1.157088    0.000000
    0    0    0    7    1   -1.157088    0.000000
    0    0    0    8    1   -1.157088    0.000000
...
    0    0    1    1    1   -0.001219    0.000000

Matrix element (eV)
s2|H|s1 = Vssσ

s2|

p2|H|s1 = Vsp
Neighbour
unit cell

WF are well localized
⇒ nearest-neighbour suffice

90 2. Electronic Band Structures

the y axis will transform (x, y, z) into (!x, y, !z), so d1 is transformed into
d3. The s-symmetry wave function |S1⟩ is unchanged while the p-symmetry
wave function |X2⟩ is transformed into ! |X2⟩ under this rotation. As a re-
sult, ⟨S1(r) |!int |X2(r !d3)⟩" !⟨S1(r) |!int |X2(r !d1)⟩. By applying similar
symmetry operations we can show that

∑

·

exp [i(d· · k)]⟨S1(r) |!int |X2(r ! d·)⟩" 1
4 Vsp{exp [i(d1 · k)]

# exp [i(d2 · k)] ! exp [id3 · k)] ! exp [i(d4 · k)]} (2.81)

In the zinc-blende structure, because the atoms 1 and 2 are different,
⟨S1 |!int |X2⟩ is, in principle, different from ⟨S2 |!int |X1⟩. They are, how-
ever, often assumed to be equal [Ref. 2.24, p. 77]. The case of the zinc-blende
crystal is left as an exercise in Problem 2.16. Here we will restrict ourselves to
the case of the diamond structure.

The 8×8 matrix for the eight s and p bands can be expressed as in Ta-
ble 2.25. Es and Ep represent the energies ⟨S1 |!0 |S1⟩ and ⟨X1 |H0 |X1⟩, re-
spectively. The four parameters g1 to g4 arise from summing over the factor
exp [i(k · d·)] as in (2.81). They are defined by

g1 " (1/4){exp [i(d1 · k)] # exp [i(d2 · k)] # exp [i(d3 · k)] # exp [i(d4 · k)]},
g2 " (1/4){exp [i(d1 · k)] # exp [i(d2 · k)] ! exp [i(d3 · k)] ! exp [i(d4 · k)]},
g3 " (1/4){exp [i(d1 · k)] ! exp [i(d2 · k)] # exp [i(d3 · k)] ! exp [i(d4 · k)]},
g4 " (1/4){exp [i(d1 · k)] ! exp [i(d2 · k)] ! exp [i(d3 · k)] # exp [i(d4 · k)]}.

If k " (2/a)(k1, k2, k3) the gj’s can also be expressed as

g1 " cos (k1/2) cos (k2/2) cos (k3/2)
! i sin (k1/2) sin (k2/2) sin (k3/2),. (2.82a)

g2 " !cos (k1/2) sin (k2/2) sin (k3/2)
# i sin (k1/2) cos (k2/2) cos (k3/2),. (2.82b)

S1 Es ! Ek Vssg1 0 0 0 Vspg2 Vspg3 Vspg4

S2 Vssg∗1 Es ! Ek !Vspg∗2 !Vspg∗3 !Vspg∗4 0 0 0
X1 0 !Vspg2 Ep ! Ek 0 0 Vxxg1 Vxyg4 Vxyg3

Y1 0 !Vspg3 0 Ep ! Ek 0 Vxyg4 Vxxg1 Vxyg2

Z1 0 !Vspg4 0 0 Ep ! Ek Vxyg3 Vxyg2 Vxxg1

X2 Vspg∗2 0 Vxxg∗1 Vxyg∗4 Vxyg∗3 Ep ! Ek 0 0
Y2 Vspg∗3 0 Vxyg∗4 Vxxg∗1 Vxyg∗2 0 Ep ! Ek 0
Z2 Vspg∗4 0 Vxyg∗3 Vxyg∗2 Vxxg∗1 0 0 Ep ! Ek

S1 S2 X 1 Y1 Z1 X 2 Y2 Z2

Table 2.25. Matrix for the eight s and p bands in the diamond structure within the tight
binding approximationNow you have all 

information 
required to build 
your ab initio TB 
sp3 Hamiltonian
(Yu & Cardona)


