

- Antiferromagnetism: bcc Cr (a₀=2.885 Å) (use 5000k, -cc 0.001)
 - try 2 different calculations:
 - ferromagnetic solution (bcc cell with 1 Cr)
 - antiferromagnetic calculation (P cell with Cr1 and Cr2 (at 0.5,0.5,0.5))
 - Before you initialize, run instgen_lapw and with up/dn for the two Cr atoms
 - for afminput your symmetry operation is "identity+(0.5,0.5,0.5)" (you need to go to individual mode)
 - is FM or AFM Cr more stable? (:ENE)
 - is FM stable at all ? check moments (MMI001: what "means" 0.000x ???)
 - plot AFM spin-densities in the (110) planes
 - do lapw1/2 for both spins
 - observe "spatial localization"
 - t_{2g}-asymmetry
 - negative spin-density in interstitial
 - where does it come from ?
 - compare :QTLxxx

■ NiO: NaCl structure, A-type AFM along [111] (in command line mode)

- mkdir NiO; cd NiO; makestruct; cp init.struct NiO.struct
 - R-cell: 5.605236 5.605236 27.459934 bohr; angles: 90,90,120
 - 3 non-equivalent atoms: Ni1 (0,0,0), Ni2 (0.5,0.5,0.5), O ±(.25,.25,.25). View and "understand" the "NaCl" structure (Xcrysden)
- instgen_lapw -ask: select up,dn,nonmagnetic for the 3 atoms
- init_lapw -b -sp -numk 100
- GGA calculations:
 - runsp_lapw; save_lapw NiO_gga
- GGA+U calculations:
 - cp \$WIENROOT/SRC_templates/case.inorb NiO.orb (and the same for case.indm)
 - (these templates are already for NiO, otherwise you have to edit them properly)
 - runsp -orb ; save_lapw NiO_gga_u
- GGA+SO calculations:
 - restore_lapw NiO_gga; initso_lapw
 - (M=[111], no relativistic LOs, Emax=5.0, select spin-polarization and accept files)
 - runsp -so ; x lapwdm -up -so (and check the orbital moment :ORB001 in *scfdmup)
 - save_lapw NiO_gga_so

LDA+U calculations

- GGA+U+SO calculations :
 - runsp -so -orb; save_lapw NiO_gga_u_so
- compare the gaps :GAP (exp: 4eV): grepline :GAP '*scf' 1
- compare spin moments :MMI001
- compare orbital moments for SO and SO+U calculations (:ORB001)
- calculate and compare DOS for GGA and GGA+U (see shifts of Ni/O weights)
 - restore_lapw NiO_xxx
 - x lapw1 -up/dn (-orb); x lapw2 -qtl -up/dn
 - configure_int (and select total,Ni1, Ni2, O-tot)
 - x tetra -up/dn
 - dosplot2 -up
- try a TB-mBJ calculation for NiO (starting from GGA) follow instructions given in mBJ exercises or F.Tran's lecture) and compare gap/DOS

FIG. 2 (color online). DOS of NiO. The vertical bars indicate the end of the fundamental band gap which starts at E = 0 eV. The panels labeled "Expt." show photoelectron [25] (upper panel) and XES [33] [lower panel, Ni (solid line) and O (dashed line) spectra] measurements.

from Tran, Blaha, PRL 102, 226401 (2009)

