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Why Model Point Defects in Solids?

At the thermodynamic equilibrium, any solid system will possess a
given amount of point defects.

The presence of defects can noticeably affect the electronic, optical
and transport properties of materials.

Such effects can be beneficial for device applications or detrimental.

The vast majority of electronic and optoelectronic devices are based
on doped semiconductors. The amount of point defects necessary for
considerably affecting the properties of a semiconductor material can
be very small (≈ 1ppm).

Effectiveness of doping can be hindered by the formation of
compensating intrinsic defects.
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Why Model Point Defects in Solids?

The ability to control the concentrations of defects in materials
determines the possibility of using such materials in technological
devices.

Understanding the physics and chemistry of point defects and their
interaction in a material can guide the development of devices based
on that material.

The experimental characterization of point defects in solids is
challenging and time consuming.

First-principles modeling offers a convenient method for an atomistic
description of point defects, complementing experimental studies and
predicting new materials of interest.

Calculations based on DFT are nowadays routinely employed but are
challenging. The accuracy of first-principles calculations of defect
properties is still far from the one of ground state properties.
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The Dilute Limit

The vast majority of first-principles calculations of systems with point
defects aim to consider the dilute limit: defect concentrations → 0, no
defect-defect interactions.
Interest in this limit since in technological applications we usually deal with
very small defect concentrations.
In this limit, we would ideally like to consider the introduction of an
isolated defect on the host material:
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The Defect Formation Energy

A key quantity that describes such process is the defect formation
energy: the change in grand potential due to the defect introduction.

∆Gf (X ; q) = G (X ; q)− G (bulk)−
∑
i

niµi + qµe(+Ecorr ) (1)

G (X ; q): the energy of the system with a defect X in charge state q

G (bulk): the energy of the pristine system

ni : number of (neutral) atoms added (ni > 0) or removed (ni < 0)
from the host material

µi : chemical potential of atom i in the reservoir, µe : chemical
potential of the electron in the reservoir

Ecorr : a term that aims to correct for the inevitable errors that occur
when we do actual calculations.
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The Defect Formation Energy

Example: Formation of a fully ionized N vacancy in GaN:

∆Gf (VacN ; 3) = G (VacN ; 3)− G (GaN) + µN + 3µe(+Ecorr ) (2)

In the process, one N atom is removed from the system.
MO picture: pristine system has N0 bonding (valence) states that can
accommodate 2N0 valence electrons.
After removing a N atom ([He] 2s22p3), we have N0 − 4 bonding
states than can accommodate 2N0 − 8 valence electrons.
The number of valence electrons after removing a N atom is 2N0 − 5
→ (2N0 − 5)− (2N0 − 8) = 3 valence electrons must be placed in
antibonding states.
Such states are induced by the defect. They can lie close to the
conduction band minimum or can lie deep within the band gap. For
some process these 3 electrons are removed from these states, leaving
the N vacancy in the completely ionized state with charge +3. In
such case, the N vacancy acts as a donor.
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Thermodynamic Transition Levels

Consider the case of P doping in Si: a typical shallow donor.
Long-range behavior potential ionized P: VI (r) ≈ e

4πκε0r
.

κ is the dielectric constant of the host material.
In a single-conduction-band model, we can write the Schrödinger equation
for an electron in the doped material as:(

− ~2

2m∗c
∇2 − e2

4πκε0r

)
F (r) = (E − Ec)F (r) (4)

m∗c : conduction band effective mass at k = 0.

Ec : conduction band minimum.

F (r): envelope function.
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Thermodynamic Transition Levels

Analogous to Schrödinger equation of the hydrogen atom:

En = Ec + En(H)
m∗c
mκ2

(5)

En(H): energy levels hydrogen atom.

A defective level has a series of “internal” excitation levels. They can
be detected with spectroscopy techniques.

More interesting for the electrical behavior is when this defective level
is ionized: one electron is donated to the host material.

Most point defects, can be ionized more than once. For devices, we
are mostly interested in the temperature-induced ionization.

Thermodynamic Transition Level between charge state q and q′: the
value of µe for which defect X in charge state q has the same formation
energy as in charge state q′:

∆Gf (X ; q) = ∆Gf (X ; q′) −→ µe =
G (X , q)− G (X , q′)

q′ − q
≡ ε(q/q′) (6)
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Defect Concentrations

Consider the formation of defect X with formation energy: ∆Gf (X ; q).
We want to find the concentration of defect X at equilibrium.

In the dilute limit defects do not interact:
∆Gf (nXX ; q) = nX∆Gf (X ; q).

Our system is in contact with a reservoir that keeps µi ,T , p constant.

Under such conditions the appropriate thermodynamic potential is the
grand potential: Φ = G −∑i µini which is minimized at the
equilibrium.

nX∆Gf (X ; q) = ∆Gf (nXX ; q) = Φ(nXX ; q)−Φ(bulk)−TSconf (nX ) (8)

Sconf is the contribution of the configurational entropy to the grand
potential of the defective system.
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Defect Concentrations

Suppose that defect X can be placed in g equivalent lattice sites in the
unit cell of the host material.

E.g. an impurity can occupy 24
equivalent tetrahedral
interstitials sites in a BCC
conventional cell.

Considering a crystal made of N
primitive BCC cells, we have
that the defect X can be placed
on Ng = 12N sites.

In each of these sites, the defect
can have θX equivalent
configurations with the same
formation energy (e.g. due to
spin degeneracy).
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Defect Concentrations

We can thus place nX defects on Ng sites, considering that each site has a
degeneracy of θX , in:

ΩX = θnXX

(
Ng

nX

)
(9)

ways.
The configurational entropy is then:

Sconf = kB ln ΩX (10)

Using Stirling’s approximation:

Sconf = kB (nX ln θX + (Ng) lnNg − nX ln nX − (Ng − nX ) ln(Ng − nX ))

In contact with the reservoir, nX is such that Φ(nXX ; q) is minimized:

0 =
∂Φ(nXX ; q)

∂nX
= ∆Gf (X ; q)− kBT ln

(
θX

Ng − nX
nX

)
(11)
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Defect Concentrations

We obtain then the defect concentration:

cX =
nX
N

=
θXg

exp( ∆Gf (X ;q)
kBT

) + θX
(12)

For common temperatures and formation energies ∆Gf (X ; q) >> kBT
thus:

cX = θXge
−∆Gf (X ;q)

kBT (13)

More than one defect type, assuming mutually independence for the
placement of different defect types (since nX << N):

Ω = ΩXΩY · · ·ΩZ → Sconf = Sconf (nX ) + Sconf (nY ) + · · ·+ Sconf (nZ )

cX = θXge
−∆Gf (X ;q)

kBT cY = θY ge
−∆Gf (Y ;q′)

kBT · · ·
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The Spinney Code

The Spinney code is a collection of Python 3 modules aiming to
process first-principles calculations of point defects in solids.

All core routines accept built-in Python objects making the code
independent on a particular ab-initio code or non-standard Python
library.

A high level interface, the PointDefect class, based on the
Atoms class of the ase library, allows for a straightforward
calculation of defect formation energies of charged defects, corrected
for electrostatic finite-size effects, from raw first-principles data.

The code allows to calculate defect and carriers concentrations at
equilibrium in the dilute limit and implements a series of tools able to
aid in all the computational steps needed in order to calculate these
quantities.
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Calculate the Defect Formation Energy in Practice

∆Gf (X ; q) allows calculation of defect concentrations and transition levels
which ultimately determine the carrier concentrations in the material.

Calculate ∆Gf (X ; q): estimating the various quantities using Density
Functional Theory.

From electronic structure calculations, we obtain the
Born-Oppenheimer electronic energy of the system: G → E .

Finite temperatures are of more interest:
G = E + Fel + Fvib + · · ·+ pV .

Free energy contributions might be important, however they are
expensive to calculate. Usual approximation: G → E for solid species,
free energy contributions included only for gas species.
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The Supercell Method

Most popular method for calculating ∆Gf (X ; q). A defect is placed in a
portion of the crystal consisting of several primitive cells. Periodic
boundary conditions are applied.

Pro: Highly efficient and simple implementation with
plane-wave-based methods.

Pro: Easy, but might be expensive, control of convergence with
supercell size.

Pro: Accurate description of the periodic defect-free system.

Con: Instead of an isolated defect, we obtain a periodic array of
defects: spurious interactions.

Con: We need to apply a a posteriori correction scheme to amend
such effects.

Pro: Most spurious effects can be efficiently avoided by increasing
the supercell size.
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Building Supercells with WIEN2k

Simple supercells can be built using the supercell program: E.g.
2× 2× 2 supercell of cubic BN.
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Building Supercells with WIEN2k

Lower the symmetry of the supercell: modify c-BN super.struct.

We have renamed atom 8 as B1 since we want to model a B vacancy
in cubic BN.
Copy c-BN super.struct to c-BN.struct and run sgroup to find
the space group of the supercell.
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Building Supercells with WIEN2k

Copy c-BN.struct sgroup to c-BN.struct and initialize the
calculation:

We will need the Coulomb potential for the electrostatic finite-size
corrections (that we will see later). You need to modify the c-BN.in0

file: replace NR2V with R2V. This will print the c-BN.vcoul file
containing the Coulomb potential after the calculation is run.

Run the calculation for the 2× 2× 2 pristine supercell of cubic BN.

Files that we will need for further processing:

c-BN.scf

c-BN.struct

c-BN.vcoul
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Building Supercells with WIEN2k

Defective system: B vacancy in charge state q = −3.
Create a new folder (e.g. defective) and copy the
c-BN super.struct file to defective.struct.
Remove a B atom (for example ATOM 8) and reduce the total number
of atoms by 1 int the defective.struct file.
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Building Supercells with WIEN2k

Run x sgroup and copy defective.struct sgroup to
defective.struct.

Modify the defective.in0 file as before.

We want a charged system: we must modify defective.in2c and
defective.inm.

Add 3 valence electrons in defective.in2c: 253→ 256

In defective.inm, modify MSR1 from 0.0
to 3.0 to avoid that WIEN2k associates the extra charge to core-leaking.

Run the calculation including structure optimization (runsp lapw

-min).
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Quantum-Mechanical Finite-Size Effects

Due to periodic boundary conditions, the Kohn-Shame orbitals of the
defective level will overlap with the neighboring cells creating a defect
band.
This gives spurious contribution to E especially if defective levels with
partial occupancy are considered.
From C. Freysoldt et al., Rev. Mod. Phys. 86, 253 (2014):

At 0K, levels with the lowest
energy are occupied.

For a dispersive defective band,
this cause an attraction between
the defects.

The wider the defect band, the
larger the effect.
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Quantum-Mechanical Finite-Size Effects

For localized states, ψ(r) ≈ e−r . For supercells with edge length L, the
spurious energy due to wavefunction overlap scales as e−L.
Increasing the supercell size to reasonable dimensions avoids the issue.
VacC in diamond (from C. Freysoldt et al., Rev. Mod. Phys. 86, 253
(2014)).

For delocalized states, the spatial extent of the defect wave function covers
several primitive cells. However spurious effects can be avoided if only the Γ point
is sampled. This is an accurate enough sampling if the supercell is large enough.
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Elastic Finite-Size Effects

The introduction of a defect induces some strain on the host material.
Atomic positions atom k in the pristine system: Rk .
Atomic position atom k in the defective system: Rk + uk .
Taylor expansion lattice energy of the defective system up to second order:

V ({Rk + uk}) = V ({Rk}) +
∑
α,k

∑
β,l

Φα,β(k ; l)uα,kuβ,l (14)

α, β range over the Cartesian coordinates.
The force on atom k along α is:

fα(k) = − ∂V

∂uα,k
= −

∑
β,l

Φα,β(k ; l)uβ,l (15)

In matrix form:

f = −Φu←→ u = −Gf (16)
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Elastic Finite-Size Effects

G: Lattice Green’s function (B. Yang and V. K. Tewary, Int. J. Solids and
Structures 42, 4722 (2005))

VacSi in Si.

i , j , kd : index unit cell along
x , y ,−z
Defect at i = j = 0.

In a bulk-like region: kd = 10

The displacement field goes to zero
fast from the defect as 1/r2.

Defect-defect lattice energy scales
as 1/L3.

Use large enough supercell.
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Electrostatic Finite-Size Effects

Monopole Potential

ψ(r) =
Q

r

Dipole Potential

ψ(r) =
p · r
r3

Quadrupole Potential

ψ(r) =
r ·Θ · r

r5

Θ: the traceless quadrupole tensor.

Electrostatic interactions can be very long-ranged if the charge distribution
has low multipole terms.
Electrostatic interaction energy ρ(r) and its images in PBC:

Monopole: E ∼ L−1

Dipole: E ∼ L−3

Quadrupole: E ∼ L−5
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Electrostatic Finite-Size Effects

For charged defects the situation is then problematic as the lowest term is
the monopole one.
Energy of the defective supercell, E (X ; q; L) converges very slowly for
L→∞. Fitting the formation energies as a function of L, one finds
(Castleton et al., PRB 73, 035215 (2006)):

E (X ; q; L) = E (X ; q; L→∞) + aL−1 + bL−3 (17)

But extracting the L→∞ in this way is very expensive.
Fortunately, it is possible to obtain convergent results is relatively small
supercell adding a Ecorr to ∆Ef (X ; q).
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Electrostatic Finite-Size Effects

The nature of the problem:

Isolated charge distribution:

∇2ψiso(r) = −4πρiso(r) ψiso(r)→ 0 as r →∞

Periodic charge distribution:

∇2ψper (r) = −4πρper (r) ψper (0, y , z) = ψper (L, y , z) etc.
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Electrostatic Finite-Size Effects

The solution of the Poisson’s equation will be different according to the
boundary conditions.

Isolated charge distribution:

ψiso(r) =

∫
ρ(r′)

|r − r′|dr′

Periodic charge distribution:

ψper (r) = 4π
∑
G 6=0

ρ̃(G)

G 2
e iG·r

In a supercell calculation we are interested in ψiso (dilute limit) but
we obtain ψper . This affects the total energy of the system.

E =
1

2

∫
V
ρ(r′)ψ(r′)dr′
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Potential Alignment

5 4 3 2 1 0 1 2 3 4 5
Distance (Å)

1

2

0

1

2

3

4

5

 (e
V)

DFT potential
Isolated PC
Periodic PC

Alignment problems:
average potential of
a system with PBC is
zero (G = (0, 0, 0)
Fourier coefficient of
ψper (r) set to zero).

e− eigenvalues, in
particular EVBM , in
pristine and charged
supercell have
different references.

Far from ρ, DFT and
model potential
differ by a constant:
alignment term.
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Jellium Background

Moreover, the electrostatic energy of charged cells with PBC diverges: we
must keep the unit cell neutral. If the cell charge density is ρ(r) and:

q =

∫
V
ρ(r)dr (18)

But in PBC, using Poisson’s equation and Gauss’ law:

4π

∫
V
ρper (r)dr =

∫
∂V

∂ψper (r)

∂n
dS = 0 with PBC (19)

So we must have:
ρper (r) = ρ(r)− q

V
(20)

− q
V is the uniform jellium background which is added to the unit cell to

make it neutral. Now the electrostatic energy is finite, however we have
additional artifacts.
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Electrostatic Corrections

Ideal procedure for correcting electrostatic finite-site effects in supercell
calculations of solids:

Identify defect-induced charge density in the simulation cell: ρd(r).
E.g. difference electronic ρ between defective charged and defective
neutral system.

Solve Poisson’s equation ∇ (κ(r)∇ψ(r)) = −4πρd(r) with open and
periodic boundary conditions.

Obtain corrective potential: ψcorr (r) = ψiso(r)− ψper (r)

Calculate correction on the electrostatic energy:
Ecorr = 1

2

∫
V ρd(r)ψcorr (r)dr

Calculate the alignment term between model ρ, charged and pristine
systems: ∆Vq/b

Correct for the defect formation energy by adding: Ecorr + q∆Vq/b
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Electrostatic Corrections

This process can be done, both self-consistently within the DFT code
or a posteriori (see e.g. I. Dabo et al., PRB 77, 115139 (2008)
and T. R. Durrant et al., J. Chem. Phys. 149, 024103 (2018)).
However, Poisson’s solvers are complicated to implement on general
domains and the calculations can be time consuming.

The approach most commonly employed consist in finding good
simple models for ρd(r), e.g. a Gaussian charge distribution (C.
Freysoldt et al., PRL 102, 016402 (2009)) and calculate
analytically most of the terms.

Simple model: point charges. Afterall, if ρd is spherically symmetric,
its potential outside from it is a point charge potential. A system of
point charges in a jellium neutralizing background has an energy

Ecorr = q2α
2κL . α is the Madelung’s constant: depends only on the

supercell shape.
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Method of Kumagai and Oba

Y. Kumagai and F. Oba, PRB 89, 195295 (2014)

Charge distribution model: point charges.

Potential alignment term: from atomic-site potentials for atoms in a
sampling region.

Sampling region: region between the Wigner-Seitz cell and its largest
inscribed sphere.

Pros::
1 Easy to implement
2 Fast execution
3 Electrostatic potential value at the atomic sites is less affected by the

presence of the defect → more reliable alignment.
4 Straightforward extension to anisotropic systems (G. Fischerauer,

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control 44, 6 (1997)).

5 Tested successfully on different materials.
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Method of Kumagai and Oba

Sampling Region
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Method of Kumagai and Oba

Sampling Region
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Method of Kumagai and Oba

Potential periodic array of point charges with charge q:

ψPC
per (r) = q

(
1√

det(κ)

∑
n

erfc(γ
√

(n− r) · κ−1 · (n− r))√
(n− r) · κ−1 · (n− r)

+
∑
G 6=0

4π

V

exp(−G · κ · G/4γ2)

G · κ · G − πq

V γ2

) (21)

γ: Ewald parameter.
Potential alignment term:

∆VPC ,q/b(ri ) = ψdefect,q(ri )− ψpristine(ri )− ψPC
per (ri ) (22)

for ri in the sampling region.
Correction energy term:

Ecorr = −q

2
lim
r→0

ψPC
per (r) (23)
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Method of Kumagai and Oba with Spinney

The method of Kumagai and Oba is implemented in Spinney as a
stand-alone module that can be imported as:
from spinney.defects.kumagai import KumagaiCorr

Consider the B −3 vacancy in cubic BN modeled with the 2× 2× 2
supercell.

From WIEN2k we obtained the .scf, .struct, .vcoul files for
pristine and defective system.

The defective system was obtained by removing B with fractional
coordinates (0.5, 0.5, 0.5).

We have to provide some data to KumagaiCorr class in order to
compute Ecorr and ∆VPC ,q/b.

The ase library can help extract most of the needed data from the
.struct files.
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Method of Kumagai and Oba with Spinney

class KumagaiCorr(Ewald):
def init (self, cell, positions defective ,

positions pristine , defect position ,
defect formal charge ,
dielectric constant ,
dft core potential def ,
dft core potential prist ,
direct cutoff=10,
reciprocal cutoff=1, alpha=None,
length units=’Angstrom’,
energy units=’eV’, tol en=1e−6,
min steps=2, tol dist=1e−2):
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Method of Kumagai and Oba with Spinney

import numpy as np
from s p i n n e y . d e f e c t s . kumagai import KumagaiCorr
import a s e . i o
s t r u c t p r i s = a s e . i o . r e a d ( ’ c−BN. s t r u c t ’ ,

format= ’ s t r u c t ’ )
s t r u c t d e f = a s e . i o . r e a d ( ’ d e f e c t i v e . s t r u c t ’ ,

format= ’ s t r u c t ’ )
# Note : i n t e r n a l u n i t s i n ase a r e Angstrom
c e l l = s t r u c t p r i s . g e t c e l l ( )
p o s i t i o n s d e f e c t i v e = s t r u c t d e f . g e t s c a l e d p o s i t i o n s ( )
p o s i t i o n s p r i s t i n e = s t r u c t p r i s . g e t s c a l e d p o s i t i o n s ( )

d e f e c t p o s i t i o n = np . a r r a y ( [ 0 . 5 , 0 . 5 , 0 . 5 ] ) # the B atom we removed
d e f e c t f o r m a l c h a r g e = −3 # fo rma l cha rge o f the d e f e c t
d i e l e c t r i c c o n s t a n t = 6 . 9 2 # ca l c u l a t e d i n ano the r c a l c u l a t i o n

# e x t r a c t the atomic−s i t e p o t e n t i a l s from the . v c ou l f i l e s
# conv e r t to eV
from s p i n n e y . i o . wien2k import e x t r a c t p o t e n t i a l a t c o r e w i e n 2 k
d f t c o r e p o t e n t i a l d e f = e x t r a c t p o t e n t i a l a t c o r e w i e n 2 k ( ’ d e f e c t i v e . s t r u c t ’ ,

’ d e f e c t i v e . v c o u l ’ )∗ 13.6056981
d f t c o r e p o t e n t i a l p r i s = e x t r a c t p o t e n t i a l a t c o r e w i e n 2 k ( ’ c−BN. s t r u c t ’ ,

’ c−BN. v c o u l ’ )∗ 13.6056981

# c r e a t e the o b j e c t f o r the c o r r e c t i o n scheme
Corr = KumagaiCorr ( c e l l , p o s i t i o n s d e f e c t i v e , p o s i t i o n s p r i s t i n e ,

d e f e c t p o s i t i o n , d e f e c t f o r m a l c h a r g e , d i e l e c t r i c c o n s t a n t ,
d f t c o r e p o t e n t i a l d e f , d f t c o r e p o t e n t i a l p r i s )
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Method of Kumagai and Oba with Spinney

# Co r r e c t i o n ene rgy eq . (23)
corr ene = Corr.get correction energy()
# take s around 2 ms

# a l i gnment p o t e n t i a l eq . (22)
pot = Corr.get potential alignment()
# take s around 0 .1 s

# o v e r a l l c o r r e c t i o n ene rgy to add to
# unco r r e c t e d d e f e c t f o rma t i on ene rgy
# E co r r = c o r r e n e + d e f e c t f o rm a l c h a r g e ∗ pot
E corr = Corr.get net correction energy()
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Method of Kumagai and Oba with Spinney

If we want to obtain the defect formation energy already corrected,
use the class PointDefect.
from spinney.structures.pointdefect import PointDefect

Takes as argument the ase Atoms object representing the defective
system with attached an ase Calculator. ase does not have a
calculator for WIEN2k, but for our goal, we just need the total
electronic energy of the system.

spinney.structures.pointdefect has the
class DummyAseCalculator with the method
set total energy(value) which allow us to insert the system total
energy.

To obtain a ase Atoms object with attached a calculator that keeps
the interface of PointDefect use:
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Method of Kumagai and Oba with Spinney

from s p i n n e y . i o . wien2k import p r e p a r e a s e a t o m s w i e n 2 k

# t o t a l ene rgy c a l c u l a t e d by WIEN2k , i n Ry
t o t a l e n e r g y R y = −5100.65085079
c a l c o b j = p r e p a r e a s e a t o m s w i e n 2 k ( ’ c−BN. s t r u c t ’ , ’ c−BN. s c f ’ )
c a l c o b j . g e t t o t a l e n e r g y ( ) # in eV , we keep ase i n t e r n a l u n i t s

We need to prepare the data needed for calculating the formation energy
of the B -3 vacancy.

# t o t a l ene rgy c a l c u l a t e d by WIEN2k f o r the d e f e c t i v e system
t o t a l e n e r g y R y d e f = −5048.05765754
c a l c o b j d e f = p r e p a r e a s e a t o m s w i e n 2 k ( ’ d e f e c t i v e . s t r u c t ’ , ’ d e f e c t i v e . s c f ’ )

# t o t a l ene rgy bu lk t r i g o n a l B
# we use t h i s v a l u e f o r the chem i ca l p o t e n t i a l o f B
t o t a l e n e r g y R y B = −1789.16328336
c a l c B = p r e p a r e a s e a t o m s w i e n 2 k ( ’B . s t r u c t ’ , ’B . s c f ’ )
mu B = c a l c B . g e t t o t a l e n e r g y ( ) / c a l c B . g e t n u m b e r o f a t o m s ( )

# Valence band maximum p r i s t i n e system
vbm = 0.6979264665 ∗ 13.6056981
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Method of Kumagai and Oba with Spinney

We now have all the data for calculating the formation energy.

from s p i n n e y . s t r u c t u r e s . p o i n t d e f e c t import P o i n t D e f e c t

pd = P o i n t D e f e c t ( c a l c o b j d e f )
pd . s e t d e f e c t p o s i t i o n ( d e f e c t p o s i t i o n )
pd . s e t d e f e c t c h a r g e ( d e f e c t f o r m a l c h a r g e )
pd . s e t p r i s t i n e s y s t e m ( c a l c o b j )

# Values o f the chem i ca l p o t e n t i a l s to be used i n the c a l c u l a t i o n s
# s i n c e we need on l y the v a l u e f o r B, we l e a v e the one f o r N equa l to None
pd . s e t c h e m i c a l p o t e n t i a l v a l u e s ({ ’B ’ : mu B , ’N ’ : None})

pd . set vbm (vbm)
pd . s e t d i e l e c t r i c t e n s o r ( d i e l e c t r i c c o n s t a n t )

# choose the Kumagai−Oba method f o r e l e c t r o s t a t i c f i n i t e−s i z e c o r r e c t i o n s
pd . s e t f i n i t e s i z e c o r r e c t i o n s c h e m e ( ’ ko ’ )
# add the atomic−s i t e p o t e n t i a l s needed by t h i s method
pd . a d d c o r r e c t i o n s c h e m e d a t a ( p o t e n t i a l p r i s t i n e=d f t c o r e p o t e n t i a l p r i s ,

p o t e n t i a l d e f e c t i v e=d f t c o r e p o t e n t i a l d e f )

# c a l c u l a t e f o rma t i on ene rgy
f o r m e n e = pd . g e t d e f e c t f o r m a t i o n e n e r g y ( ) # 10.89 eV , w i thout E co r r
f o r m e n e c o r r = pd . g e t d e f e c t f o r m a t i o n e n e r g y ( i n c l u d e c o r r=True ) # 14 .40 , w i th E co r r
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Giving Values to the Chemical Potentials

∆Gf (X ; q) values are determined by the chemical potentials of the
atomic species and electrons affected by the creation of the point
defect.

In our grand canonical scheme, their value is fixed by the reservoir. In
practice, the values depend on the environmental conditions:
connection between calculations and experiments.

E.g. AxBy compound. Thermodynamic stability requires that the chemical
potentials of A and B must have a value such that:

xµA + yµB = µAxBy

µA ≤ µA(A)

µB ≤ µB(B)

aµA + bµB ≤ µAaBb

Optimization problem: find the possible ranges of µA and µB .
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Choosing the Competing Phases

Several compounds made with atoms A and B might exist.

1 Consider only the most known compounds and calculate their total
energies.

2 Make an exhaustive search using online databases of ab-initio
calculations (such as AFLOW, Materials Project, etc.)

Using databases seems desirable: no need to redo the calculations for
the competing phases, which can be time-consuming for systems with
a complex chemistry

The quality of the calculations in the databases should be carefully
assessed.

Calculating the convex hull of the system is a good starting point for
identifying the most stable phases, and redo only a small amount of
calculations, if needed.
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Calculating Convex Hull with Spinney

Find the convex hull for the Ga-N system by accessing the AFLOW

database.

Use the AFLOW REST API to retrieve the data for the Ga-N system.

Save the data in two text files.

One file must have two columns: the molar fraction of one
component (for example N) and the formation energy of that
compound with respect to a reference bulk Ga and N (whose values
are found on the database).

Ideally the references should reflect the chemistry of the system:
α-Ga and gas N2.
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Calculating Convex Hull with Spinney

For each compound in this file, the second file should contain the
database identifiers for that compound. (Not mandatory file)
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Calculating Convex Hull with Spinney

from s p i n n e y . thermodynamics . c o n v e x h u l l import B i n a r y C o n v e x H u l l

# molar f r a c t i o n s o f N
d a t a e n e r g i e s = ’ a l l compounds Ga N . t x t ’
d a t a i d s = ’ a l l c o m p o u n d s G a N i d s . t x t ’

a l l p o i n t s = np . l o a d t x t ( d a t a e n e r g i e s , dtype=np . f l o a t 6 4 )
i d e n t i f i e r s = np . l o a d t x t ( d a t a i d s , dtype=str )

g a n h u l l = B i n a r y C o n v e x H u l l ( a l l p o i n t s , i d e n t i f i e r s )
g a n h u l l . p l o t h u l l ( ’GaN h u l l a l l d a t a b a s e ’ , ’N ’ )

# p r i n t the i d e n t i f i e r s f o r the compounds on the convex h u l l
print ( ’ I d e n t i f i e r s compounds on t h e h u l l : ’ )
for i x in g a n h u l l . c a n d i d a t e s i d e n t i f i e r s :

print ( i x )
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Calculating Convex Hull with Spinney
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System with a more complex chemistry: Ti-O
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System with a more complex chemistry: Ti-O

There is clearly an outlier in the data. We remove it.
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System with a more complex chemistry: Ti-O
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System with a more complex chemistry: Ti-O

It looks much better, but know compounds as TiO and Ti2O3 are still
missing.

We instruct the BinaryConvexHull object to include in the candidate
compounds those whose energy is within 0.1 eV above the hull:
ti o hull.add candidates within tolerance(0.1)
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System with a more complex chemistry: Ti-O
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System with a more complex chemistry: Ti-O

This looks more satisfying. We can retrieve the candidates from the
database (if we supplied proper identifiers) for further processing:

for ix in ti o hull.candidates identifiers: print(ix)

For example, we could apply the method described in A. Jain et al.,
PRB 84, 045115 (2011) to mix GGA + U and GGA in order to
obtain more accurate formation energies. GGA + U describes better
systems with strongly correlated electrons, as transition-metal oxides;
while GGA describes better metallic systems. Their energies are
however not directly comparable.
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System with a more complex chemistry: Ti-O
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System with a more complex chemistry: Ti-O

This looks reasonable; unfortunately TiO is still not on the hull, even
though it is within a 300kB from it. This is a very reasonable
agreement since we are considering systems at 0K.

Bottom line: online repositories are a very powerful tool, but thy
should be used with care when dealing with complex systems. The
class BinaryConvexHull offers a simple interface which can help
with the task.
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Finding the allowed chemical potentials ranges with
Spinney

Consider the Ti-O system. Suppose we are interested in finding the
physical limit of the chemical potentials µTi and µO for the TiO2

anatase system.

After using the class BinaryConvexHull we know which are the
most stable competing phases: TiO, Ti2O3 and Ti3O5.

We need to solve the optimization problem:

µTi + 2µO = µTiO2(anatase)

µO ≤
1

2
µO2(gas)

µTi ≤ µTi (bulk)

µTi + µO ≤ µTiO
2µTi + 3µO ≤ µTi2O3

3µTi + 5µO ≤ µTi3O5

(24)

Marco Arrigoni (TU Wien) Defects in Solids 17.08.2019 50 / 66



Finding the allowed chemical potentials ranges with
Spinney

Its solution gives the possible values of the chemical potentials for
which TiO2 anatase is thermodynamically stable. We can solve it
using the Range class in spinney.thermodynamics.chempots

class Range:
def init (self,
coeff equalities , const equalities ,
coeff inequalities , const inequalities ,
bounds):

With:
coeff equalities = ((1,2))
const equalities = (µTiO2 , )
coeff inequalities = ((1, 1), (2, 3), (3,5))
const inequalities = (µTiO , µTi2O3 , µTi3O5)
bounds = ((None, µTi (bulk)), (None, 1/2µO2))
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f r o m s p i n n e y . thermodynamics . chempots i m p o r t Range

mu range = Range ( c o e f f e q u a l i t i e s , c o n s t e q u a l i t i e s ,
c o e f f i n e q , c o n s t i n e q ,
( bounds o , b o u n d s t i ) )

# chemica l p o t e n t i a l r ange s on an ab s o l u t e s c a l e
mu range . f i n d v a r i a b l e s e x t r e m a ( )
p r i n t ( mu range . v a r i a b l e s e x t r e m a )

We find that:

∆µO ≡ µO −
1

2
µO2(gas) ∈ [−2.81, 0]

∆µTi ≡ µTi − µTi (bulk) ∈ [−9.48,−3.85]
(25)

While TiO2 anatase can exist in equilibrium with O2, it cannot with
bulk Ti: compound of the Ti-O system richer in Ti (as Ti2O3) would
start to precipitate.
Calculating the defect formation energy in the Ti-rich limit is
unphysical!
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Including (some) Thermal Effects

The value of µ is determined by the environment. Experimentally it is
possible to modify the µ of gas species by tuning their partial pressure
and T.
We can take into account T and p effects on the defect formation
energy by mixing DFT energies with experimental values: Shomate
equation plus ideal gas model:

µ(T , p) = µ(0, p◦) + [G (T , p◦)− G (0, p◦)] + kBTln(
p

p◦
)

The module thermodynamics.chempots of spinney implements
this model for some gas molecules.
from s p i n n e y . thermodynamics . chempots import OxygenChemPot

mu O = OxygenChemPot ( e n e r g y u n i t s= ’ eV ’ , p r e s s u r e u n i t s= ’ Pa ’ )
mu O 0K = 0.5∗ d f t e n e r g y o 2
T range = [ 3 0 0 , 500 , 1 0 0 ]
p r a n g e = [ 1 e−5, 1e−3, 1 , 1 e3 ]
mu O values = mu O . g e t i d e a l g a s c h e m i c a l p o t e n t i a l S h o m a t e ( mu O 0K ,

p range , T range )
# mu O values i n a 2D numpy a r r a y o f shape ( l e n ( T range ) , l e n ( p range ) )
# con t a i n i n g the c a l c u l a t e d v a l u e s o f mu O
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The Electron Chemical Potential

As for the atomic species, µe is fixed by the environment; i.e. the
reservoir.

The system must be overall neutral considering all charged species.

Free electrons:

n0 =

∫ ∞
Ec

ω(E )
1

e(E−µe)/kBT + 1
dE

Free holes:

p0 =

∫ EVBM

−∞
ω(E )

1

e(µe−E)/kBT + 1
dE

Ionized donors will generate extra n0 and ionized acceptors extra p0

Neutrality condition:∑
X ,q

qcX ,q(µe) + p0(µe)− n0(µe) = 0

Solving this equation for µe gives the value of the chemical potential
of the electron.
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Calculating Equilibrium Defects and Carriers
Concentrations

We now have all the ingredients for calculating the equilibrium defects
and carrier concentrations.

Take the example of GaN, we consider only the intrinsic defects
VacGa and VacN : intrinsic acceptor and donor, respectively.

Small (72-atoms) supercell: only for illustration purposes.

To gain insight on the system, we plot the defect formation energy as
a function of µe .

We can use spinney.defects.diagrams.Diagram.

class Diagram:
def init (self, defects dictionary , gap range ,

extended gap range=None,
electron mu=None):
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Finding Charge Transition Levels with Spinney

defects dictionary = {
’Vac Ga’:{0 : ef ga 0 , −1 : ef ga m1 , ... },
’Vac N’:{0 : ef n 0 , ...}
}

Formation energy values calculated for µe = EVBM .
gap range = (0, E g)

LDA/GGA functionals underestimate the band gap.

Transition levels in fairly good agreement with more accurate
functionals (e.g. hybrids) might be obtained by simply aligning
LDA/GGA band edges to the other functional’s one: J. L. Lyons et
al., npj Computational Materials 12, (2017)

extended gap range = (−vbm offset, −vbm offset + E g corr)
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f r o m s p i n n e y . d e f e c t s . d iagrams i m p o r t Diagram

# o f f s e t VBM PBE and HSE
v b m o f f s e t = 0 . 8 5
E g = 1 . 7 1 # PBE
E g c o r r = 3 . 5 1 # HSE06
diagram = Diagram ( d e f e c t s d i c t i o n a r y ,

( 0 , E g ) , # E vbm f o r f o rma t i on e n e r g i e s
(− v b m o f f s e t , −v b m o f f s e t + E g c o r r ) )

d iagram . p l o t ( c o l o r s d i c t ={ ’ Vac Ga ’ : ’ b l u e ’ , ’ Vac N ’ : ’ r e d ’ } ,
l e g e n d=True )
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Finding Charge Transition Levels with Spinney

Find charge transition levels

diagram . d e f e c t s [ ’ Vac Ga ’ ] . t r a n s i t i o n l e v e l s
#Returns the t r a n s i t i o n l e v e l s f o r the Ga vacancy :
>>> d e f a u l t d i c t ( dict ,

{1 : {0 : −0.844698} ,
0 : {1 : −0.844698 , −1: −0.2494978} ,
−1: {0 : −0.2494978 , −2: 0 .2430350} ,
−2: {−1: 0 . 2 4 3 0 3 5 0 , −3: 0 .4755775} ,
−3: {−2: 0 .4755775}} )

# Same th i n g f o r N vacancy
diagram . d e f e c t s [ ’ Vac N ’ ] . t r a n s i t i o n l e v e l s
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Finding Defects Concentrations with Spinney

Equilibrium defect and carriers concentrations can be found by using the
class EquilibriumConcentrations in
spinney.defects.concentration.

class E q u i l i b r i u m C o n c e n t r a t i o n s :
def init (self , c h a r g e s t a t e s ,

form energy vbm , vbm , e gap , N conc ,
dos , N e f f , T range , g=None , u n i t s e n e r g y= ’ eV ’ ,
dos down=None ) :

c h a r g e s t a t e s = { ’ Vac Ga ’ : [−3 , −2, −1, 0 , 1 ] ,
’ Vac N ’ : [−1 , 0 , 1 , 2 , 3 ]}

fo rm energy vbm = {
’ Vac Ga ’ : [ val m3 , val m2 , val m1 ,

v a l 0 , v a l 1 ] ,
’ Vac N ’ : [ valn m1 , v a l n 0 , v a l n 1 ,

v a l n 2 , v a l n 3 ]
}
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Finding Defects Concentrations with Spinney

# s i t e s f o r d e f e c t s and e l e c t r o n s , h o l e s
# c o n c e n t r a t i o n s pe r c e l l , i n cmˆ−3
N conc = { ’ Vac Ga ’ : g Ga ,

’ Vac N ’ : g N ,
’ e l e c t r o n ’ : c o n c f a c t o r ,
’ h o l e ’ : c o n c f a c t o r }

# DOS must be c o n s i s t e n t w i th the
# c o n c e n t r a t i o n s o f e l e c t r o n s and h o l e s
# i n N conc
# i t i s c onv en i e n t to a l i g n the DOS
dos [ : , 0 ] −= h s e o f f s e t

T range=np . l i n s p a c e (300 , 1500 , 50)
e q c o n c = E q u i l i b r i u m C o n c e n t r a t i o n s ( c h a r g e s t a t e s ,

form energy vbm ,
vbm , E g , N conc ,
dos , 0 , T range=T range )
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Finding Defects Concentrations with Spinney

eq conc.equilibrium fermi level[−1] − eq conc.vbm
>>> 1.626

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

µe(eV )

1014

1016

1018

1020

1022

1024

c
(c

m
−

3
)

GaN T=1500K
Na + n0

Nd + p0

Marco Arrigoni (TU Wien) Defects in Solids 17.08.2019 62 / 66



Finding Defects Concentrations with Spinney

p l t . p l o t ( T range ,
e q c o n c . e q u i l i b r i u m f e r m i l e v e l − e q c o n c . vbm)
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Finding Defects Concentrations with Spinney

eq conc.equilibrium defect concentrations
Dictionary: for each defect and charge states reports the equilibrium
defect concentration for each T in T range.
eq conc.equilibrium electron concentrations
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What’s more?

Inclusion of thermal effects
1 Harmonic vibrational free energy impacts on ∆Gf (X ; q).

T. S. Bjørheim, M. Arrigoni et al., PCCP 17, 20765 (2015),
Chemistry of Materials 28, 1363 (2016)

2 Even anharmonic terms A. Glensk et al., PRX 4, 011018 (2014)

Beyond the dilute limit: defect complexes.
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The End
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