

Hyperfine interactions

Mössbauer, PAC and NMR Spectroscopy: Quadrupole splittings, Isomer shifts, Hyperfine fields (NMR shifts)

Peter Blaha

Institute of Materials Chemistry TU Wien

hyperfine interactions

_

all aspects of nucleus-electron interactions which go beyond an electric point charge for a nucleus

> and is measured at the nucleus (affects the nucleus)

===> information about nucleus and the electron (spin) density around it

nucleus with volume, shape and magnetic moment

NMR
NQR
Mössbauer spectroscopy
TDPAC

• between nuclear charge distribution (σ) and external potential $E = \int \sigma_n(x) V(x) dx$

Taylor-expansion at the nuclear position

$$E = V_0 Z$$
 ($V_{00}(r) \sigma_n(x)$)

 $+\sum_{i}\frac{\partial V(0)}{\partial x_{i}}\int\sigma(x) x_{i} dx$

direction independent constant (monopole interaction)

electric field x nuclear dipol moment (=0)

 $+\frac{1}{2}\sum_{ii}\frac{\partial^2 V(0)}{\partial x_i \partial x_i} \int \int \sigma(x) x_i x_j dx \quad \text{electric field gradient } \mathbf{x} \\ \text{nuclear quadrupol moment } \mathbf{Q}$

higher terms neglected

nucleus with charge Z, but not a sphere (I>1/2)

+...

•*Recoil-free, resonant absorption and emission* of γ-rays by a nucleus. 1958 by *Rudolf Mößbauer* (Nobelprice 1963)

•The **decay** of a **radioactive** nucleus produces a highly excited isotope of a neighboring element (Z-1).

•This isotope can get into its ground state by **emission** of γ -photons (recoil-free, otherwise E-loss; requires a "solid", no phonon excitation; the "**source**") !.

•The nucleus in the "**probe**" can **absorb** this photon (of eg. 14.4 keV), but the nuclear level splitting will be slightly modified by the **chemical environment** of the probe (only by ~ 10 neV !!!). Bring them in **resonance** with the **Doppler** effect (mm/s) !

•The most important isotopes are: ⁵⁷Fe, Sn, Sb, Te, I, W, Ir, Au, Eu and Gd.

Mössbauer Isomer Shift δ:

- integral over nuclear radius of electron density x nuclear charge
- nuclear radii are different for ground and excited state

m_l ± 3/2

±1/2

±1/2

QS

Quadrupol-

aufspaltung

EFG

Isomerie-

verschiebung

QS

(-)

0 (+) v/mms

$$E = \frac{1}{2} \sum_{ij} V_{ij} Q \qquad Q(^{57}\text{Fe}) = 0.16 \text{ barn}$$

$$V_{ij}: \text{ traceless 3x3 tensor of electric field gradient}$$

$$(2^{nd} \text{ derivative of V(0)}) \quad V_{ij} = \frac{\partial^2 V(0)}{\partial x_i \partial x_j}$$

$$\begin{vmatrix} V_{aa} V_{ab} V_{ac} \\ V_{ba} V_{bb} V_{bc} \\ V_{ca} V_{cb} V_{cc} \end{vmatrix} \Rightarrow \begin{vmatrix} V_{xx} & 0 & 0 \\ 0 & V_{yy} & 0 \\ 0 & 0 & V_{zz} \end{vmatrix} \quad \text{with} \quad \begin{cases} V_{xx} + V_{yy} + V_{zz} = 0 \\ |V_{zz}| \ge |V_{yy}| \ge |V_{xx}| \end{cases}$$

EFG characterized by principal component V_{zz} and asymmetry parameter $\eta = \frac{V_{yy}}{V_{yy}} - \frac{V_{zz}}{V_{yy}}$

$$\eta = \frac{/V_{yy}/-/V_{xx}/}{/V_{zz}/}$$

I=1/2

$$QS = \frac{1}{2}eQV_{zz}\sqrt{1 + \frac{\eta^2}{3}}$$

First-principles calculation of EFG

VOLUME 54, NUMBER 11 , 1192 PHYSICAL REVIEW LETTERS

18 MARCH 1985

First-Principles Calculation of the Electric Field Gradient of Li₃N

P. Blaha and K. Schwarz

Institut für Technische Elektrochemie, Technische Universität Wien, A-1060 Vienna, Austria

and

P. Herzig Institut für Physikalische Chemie, Universität Wien, A-1090 Vienna, Austria (Received 5 December 1984)

Fig. 1. Crystal structure of Li3N with increased c dimension

Model for Φ_{z}	Li(1)	Li(2)	Li(1)/Li(2)	Ν
Point charge	-20.37	9.01	2.26	0.33
Muffin-tin LAPW	-7.47	3.72	2.00	3.41
Present work	-6.94	3.41	2.04	11.16
Experiment	-5.87	2.88	2.04	13.04

VOLUME 75, NUMBER 19 , 3545 PHYSICAL REVIEW LETTERS

6 NOVEMBER 1995

Determination of the Nuclear Quadrupole Moment of ⁵⁷Fe

Philipp Dufek, Peter Blaha, and Karlheinz Schwarz Institut für Technische Elektrochemie, Technische Universität Wien, A-1060 Vienna, Austria (Received 17 July 1995)

Theoretical and experimental Fe-EFG in Fe-compounds

 $E = \frac{1}{2} \sum_{ij} V_{ij} Q$

- From the slope between
 - the theoreical EFG and
 - experimental quadrupole splitting Δ_Q (mm/s)
- the nuclear quadrupole moment Q of the most important Mössbauer nucleus is found to be about twice as large (Q=0.16 b) as so far in literature (Q=0.082 b)

 V_{zz}

theoretical EFG calculations

We write the charge density and the potential inside the atomic spheres in a lattice-harmonics expansion

orbital decomposition :

$$\rho_{20}(r) = \int \sum_{k,n} \int \phi_{lm}^{nk^*} \phi_{l'm'}^{nk} Y_{20} d\hat{r} \implies p - p; d - d; (s - d) \text{ contr.}$$
$$= V_{zz}^{pp} + V_{zz}^{dd} + \dots + \text{ interstitial}$$

theoretical EFG calculations

$$V_{zz} = V_{zz}^{pp} + V_{zz}^{dd} + \dots + interstitial$$

$$V_{zz}^{pp} \propto \left\langle \frac{1}{r^3} \right\rangle_p \left[\frac{1}{2} (p_x + p_y) - p_z \right]$$

$$V_{zz}^{dd} \propto \left\langle \frac{1}{r^3} \right\rangle_d \left[d_{xy} + d_{x^2 - y^2} - \frac{1}{2} (d_{xz} + d_{yz}) - d_{z^2} \right]$$

- EFG is proportial to differences of orbital occupations , e.g. between $p_x p_y$ and p_z .
- if these occupancies are the same by symmetry (cubic): $V_{zz}=0$
- with "axial" (hexagonal, tetragonal) symmetry ($p_x = p_y$): $\eta = 0$

In the following various examples will be presented.

• K.Schwarz, C.Ambrosch-Draxl, P.Blaha, Phys.Rev. B42, 2051 (1990)

D.J.Singh, K.Schwarz, K.Schwarz, Phys.Rev. B46, 5849 (1992)

Interpretation of the EFG at the oxygen sites

	p _x	p _y	p _z	V _{aa}	V _{bb}	V _{cc}
O(1)	1.18	0.91	1.25	-6.1	18.3	-12.2
O(2)	1.01	1.21	1.18	11.8	-7.0	-4.8
O(3)	1.21	1.00	1.18	-7.0	11.9	-4.9
O(4)	1.18	1.19	0.99	-4.7	-7.0	11.7

Asymmetry count **EFG** (p-contribution)

$$\Delta n_p = p_z - \frac{1}{2}(p_x + p_y) \qquad V_{zz}^p \propto \Delta n_p < \frac{1}{r^3} >_p$$

EFG is proportional to asymmetric charge distribution around given nucleus

partly occupied

	p _x	p _y	Pz	d _z 2	$d_{x^2-y^2}$	d _{xy}	d _{xz}	d _{yz}
Cu(1)	0.03	0.07	0.10	1.41	1.65	1.84	1.84	1.86
Cu(2)	0.07	0.07	0.03	1.76	1.44	1.85	1.82	1.82

a transfer of 0.07 e into the d_z^2 would increase the EFG from -5.0 by

$$V_{zz}^{d} = -.14 \times 47 = -6.6$$

bringing it to -11.6 inclose to the Experimental value (-12.3 10²¹ V/m²)

EFG is determined by the non-spherical charge density inside sphere $\rho(r) = \sum_{LM} \rho_{LM}(r) Y_{LM} \qquad V_{zz} \propto \int \frac{\rho(r) Y_{20}}{r^3} dr = \int \rho_{20}(r) r \, dr$ 0.2 3. -5- $\rho_{20}(r)r^2$ 0.1-V20(r) -10-Cu(2) 0 -3--15- $\rho_{20}(r)/r$ -0.1--20 final EFG 12.0 0.02 0.5 $\frac{\rho_{22}(\mathbf{r})\mathbf{r}^2}{\sum_{i=1}^{22}}$ $V_{20}(r)$ $\rho_{22}(\mathbf{r})/\mathbf{r}$ 0(4) 0.00 9.0-0.0--0.02-6.0- $/\rho_{_{20}}(r)/r$ -0.5- $V_{22}(r)$ 3.0--0.04 $\hat{\rho}_{20}(\mathbf{r})\mathbf{r}^2$ 0.0 -0.06r 1 2 r 1

 Depending on the atom, the main EFG-contributions come from anisotropies (in occupation or wave function)

- semicore p-states (eg. Ti 3p much more important than Cu 3p)
- valence p-states (eg. O 2p or Cu 4p)
- valence d-states (eg. TM 3d,4d,5d states; in metals "small")
- valence f-states (only for "localized" 4f,5f systems)

usually only contributions within the first node or within 1 bohr are important.

- Undoped Cuprates (La₂CuO₄, YBa₂Cu₃O₆) are nonmagnetic metals instead of antiferromagnetic insulators
- Both, doped and undoped cuprates have a "planar Cu" EFG which is by a factor of 2-3 too small
- We need a method which giver a better description of correlated 3d electrons: can LDA+U fix these problems ??

EFGs in fluoroaluminates

10 different phases of known structures from CaF₂-AlF₃, BaF₂-AlF₃ binary systems and CaF₂-BaF₂-AlF₃ ternary system

Important discrepancies when structures are used which were determined from X-ray powder diffraction data

Very fine agreement between experimental and calculated values

M.Body, et al., *J.Phys.Chem. A 2007, 111, 11873* (Univ. LeMans)

- GLLB-SC is the most accurate method (for this set of compounds)
- mBJLDA is not recommended
- Standard PBE is inaccurate for CuO and Cu₂O

EPGINITO VIIII. Very macculate values are miled.										
Method	Ti	Zn	Zr	Tc	Ru	Cd	CuO	Cu ₂ O	Cu ₂ Mg	
LDA	1.80	3.50	4.21	-1.65	-1.56	7.47	-1.86	-5.27	-5.70	
PBE	1.73	3.49	4.19	-1.61	-1.46	7.54	-2.83	-5.54	-5.70	
EV93PW91	1.61	3.43	4.13	-1.57	-1.33	7.63	-3.17	-6.53	-5.82	
AK13	1.65	3.86	4.17	-1.28	-1.13	8.53	-3.56	-7.92	-5.44	
Sloc	1.44	3.93	2.75	-0.52	-0.35	8.01	-3.97	-11.97	-4.10	
HLE16	1.70	3.29	3.78	-0.95	-0.73	7.66	-4.18	-10.10	-4.59	
BJLDA	1.97	3.51	4.25	-1.27	-1.16	7.61	-5.42	-7.74	-5.20	
mBJLDA	1.99	3.35	4.33	-1.20	-0.90	7.56	-13.93	-7.40	-4.89	
LB94	0.94	3.78	1.83	-0.72	-1.05	7.47	-1.23	-11.16	-4.97	
GLLB-SC	1.62	3.72	4.42	-1.66	-1.26	8.05	-4.65	-9.99	-5.58	
HSE06	1.5	4.4	4.5	-2.0	-1.3	9.4	-8.9	-8.3	-6.3	
Expt.	1.57(12)	3.40(35)	4.39(15)	1.83(9)	0.97(11)	7.60(75)	7.55(52)	10.08(69)	5.76(39)	

EFG in 10²¹ V/m². Very inaccurate values are in red.

 Zeman - interaction between magnetic moment I of the nucleus and the external magnetic field B (at the nucleus, produced by the spin-polarized e⁻ in a FM)

magnetic fields at nucleus:

Source of magnetic fields at the nuclear site in an atom/solid

$$B_{tot} = B_{dip} + B_{orb} + B_{fermi} + B_{lat}$$

Magnetic Hyperfine fields: B_{tot}=B_{contact} + B_{orb} + B_{dip}

$$B_{contact} = 8\pi/3 \,\mu_B [\rho_{up}(0) - \rho_{dn}(0)] \qquad \text{spin-density at the nucleus}$$

$$\vec{B}_{orb} = 2\mu_B \langle \Phi | \frac{S(r)}{r^3} \vec{l} | \Phi \rangle \qquad \text{orbital-moment}$$

$$\vec{B}_{dip} = 2\mu_B \langle \Phi | \frac{S(r)}{r^3} \left[3(\vec{s} \, \vec{r}) \, \vec{r} - \vec{s} \right] | \Phi \rangle \qquad \text{spin-moment}$$

S(r) is reciprocal of the relativistic mass enhancement $S(r) = \left[1 + \frac{\epsilon - V(r)}{2mc^2}\right]^{-1}$

Magnetic hyperfine field

In regular scf file:

:HFFxxx (Fermi contact contribution)

After post-processing with LAPWDM :

- orbital hyperfine field ("3 3" in case.indmc)
- dipolar hyperfine field ("3 5" in case indmc)

in case.scfdmup

top	of file: case.indm
-9.	Emin cutoff energy
1	number of atoms for which density matrix is calculated
1 1 2 index of	1st atom, number of L's, L1
0 0 r-index,	(l,s)-index
bc	ttom of file

After post-processing with DIPAN :

lattice contribution

in case.outputdipan

more info: UG 7.8 (lapwdm) UG 8.3 (dipan)

charge ordered (CO) phase: Pmma a:b:c=2.09:1:1.96 (20K) valence mixed (VM) phase:
Pmmm a:b:c=1.003:1:1.93 (340K)

- Fe²⁺ and Fe³⁺ form chains along b
- contradicts Anderson charge-ordering conditions with minimal electrostatic repulsion (checkerboard like pattern)
- has to be compensated by orbital ordering and e⁻-lattice coupling

GGA

GGA+U

single lower Hubbard-band in VM splits in CO with Fe³⁺ states lower than Fe²⁺

• CO phase

VM phase

Mössbauer spectroscopy

$\mathbf{c}\mathbf{o}$		exp.		LDA	GGA			
	U_{eff} [eV]		5	6	7	8		
	B_{dip}		-16.29	-16.49	-16.66	-16.83	-6.68	-12.67
	B_{orb}		-6.73	-6.90	-8.26	-7.65	-9.57	-6.34
$Fe2^{2+}$	$B_{contact}$		32.25	32.23	32.58	32.60	32.21	31.58
	B_{tot}	~ 8	9.23	8.83	7.66	8.13	15.96	12.57
	δ	~ 1	0.92	0.94	0.96	0.99	0.74	0.79
	eQV_{zz}	$3.6 - 4^{a}$	3.66	3.74	3.81	3.89	-0.82	2.60
	B_{dip}		-0.67	-0.60	-0.52	-0.45	1.29	0.39
	Borb		-0.52	-0.45	-0.37	-0.28	-7.96	-2.65
$Fe1^{3+}$	$B_{contact}$		37.65	38.28	38.15	37.86	29.64	31.63
	B_{tot}	~ 50	36.46	37.24	37.26	37.12	22.97	29.37
	δ	~ 0.4	0.33	0.30	0.28	0.25	0.50	0.47
	eQV_{zz}	$1-1.5^{\circ}$	1.46	1.50	1.51	1.52	1.04	-0.30
^a dependin	g on rare earth ion							
\/N/I		exp.		G	GA+U		LDA	GGA
VIVI	U_{eff} [eV]		5	6	7	8		
	B_{dip}		-3.00	-2.98	-2.95	-2.87	-2.13	-2.83
	B_{orb}		-3.11	-2.99	-2.84	-2.74	-5.47	-4.56
$\mathrm{Fe}^{2.5+}$	$B_{contact}$		41.17	40.96	41.45	41.17	33.10	36.36
	B_{tot}	~ 30	35.06	34.98	35.67	35.56	25.50	28.98
	δ	~ 0.5	0.53	0.52	0.51	0.49	0.60	0.60
	eQV_{zz}	~ 0.1	0.12	0.13	0.13	0.13	0.19	-0.27

$\mathbf{c}\mathbf{o}$		exp.	GGA+U					GGA
	U_{eff} [eV]		5	6	7	8		
	B_{dip}		-16.29	-16.49	-16.66	-16.83	-6.68	-12.67
	B_{orb}		-6.73	-6.90	-8.26	-7.65	-9.57	-6.34
$Fe2^{2+}$	$B_{contact}$		32.25	32.23	32.58	32.60	32.21	31.58
	B_{tot}	~ 8	9.23	8.83	7.66	8.13	15.96	12.57
	δ	~ 1	0.92	0.94	0.96	0.99	0.74	0.79
	eQV_{zz}	$3.6 - 4^{a}$	3.66	3.74	3.81	3.89	-0.82	2.60
	B_{dip}		-0.67	-0.60	-0.52	-0.45	1.29	0.39
	B_{orb}		-0.52	-0.45	-0.37	-0.28	-7.96	-2.65
$\mathrm{Fe1}^{3+}$	$B_{contact}$		37.65	38.28	38.15	37.86	29.64	31.63
	B_{tot}	~ 50	36.46	37.24	37.26	37.12	22.97	29.37
	δ	~ 0.4	0.33	0.30	0.28	0.25	0.50	0.47
	eQV_{zz}	$1 - 1.5^{a}$	1.46	1.50	1.51	1.52	1.04	-0.30
^a dependin	g on rare earth ion							
		exp.		G	GA+U		LDA	GGA
VIVI	U_{eff} [eV]		5	6	7	8		
	B_{dip}		-3.00	-2.98	-2.95	-2.87	-2.13	-2.83
	B_{orb}		-3.11	-2.99	-2.84	-2.74	-5.47	-4.56
$\mathrm{Fe}^{2.5+}$	$B_{contact}$		41.17	40.96	41.45	41.17	33.10	36.36
	B_{tot}	~ 30	35.06	34.98	35.67	35.56	25.50	28.98
	δ	~ 0.5	0.53	0.52	0.51	0.49	0.60	0.60
	eQV_{zz}	~ 0.1	0.12	0.13	0.13	0.13	0.19	-0.27

<u> </u>		exp.		LDA	GGA			
	U_{eff} [eV]		5	6	7	8		
	B_{dip}		-16.29	-16.49	-16.66	-16.83	-6.68	-12.67
	B_{orb}		-6.73	-6.90	-8.26	-7.65	-9.57	-6.34
$Fe2^{2+}$	B _{contact}		32.25	32.23	32.58	32.60	32.21	31.58
	B _{tot}	~ 8	9.23	8.83	7.66	8.13	15.96	12.57
	δ	~ 1	0.92	0.94	0.96	0.99	0.74	0.79
	eQV_{zz}	$3.6 - 4^{a}$	3.66	3.74	3.81	3.89	-0.82	2.60
	B_{dip}		-0.67	-0.60	-0,52	-0.45	1.29	0.89
	Borb		-0.52	-0.45	-0.37	-0.28	-7.96	-2.65
$Fe1^{3+}$	Bcontact		37.65	38.28	38.15	37.86	29.64	
	Btot	~ 50	36.46	37.24	37.26	37.12	22.97	29.37
	δ	~ 0.4	0.33	0.30	0.28	0.25	0.50	0.47
	eQV_{zz}	$1 - 1.5^{a}$	1.46	1.50	1.51	1.52	1.04	-0.30
^a dependin	g on rare earth ion							
\/N/I		exp.		GGA	A+U		LDA	GGA
VIVI	U_{eff} [eV]		5	6	7	8		
	B_{dip}		-3.00	-2.98	-2.95	-2.87	-2.13	-2.83
	B_{orb}		-3.11	-2.99	-2.84	-2.74	-5.47	-4.56
$\mathrm{Fe}^{2.5+}$	$B_{contact}$		41.17	40.96	41.45	41.17	33.10	36.36
	B _{tot}	~ 30	35.06	34.98	35.67	35.56	25,50	28.98
	δ	~ 0.5	0.53	0.52	0.51	0.49	0.60	0.60
	eQV_{zz}	~ 0.1	0.12	0.13	0.13	0.13	0.19	-0.27

<u>^</u>		exp.		(GGA+U		LDA	GGA
	U_{eff} [eV]		5	6	7	8		
	B_{dip}		-16.29	-16.49	-16.66	-16.83	-6.68	-12.67
	Borb		-6.73	-6.90	-8.26	-7.65	-9.57	-6.34
$Fe2^{2+}$	$B_{contact}$		32.25	32.23	32.58	32.60	32.21	31.58
	B_{tot}	~ 8	9.23	8.83	7.66	8.13	15.96	12.57
	δ	~ 1	0.92	0.94	0.96	0.99	0.74	0.79
	eQV_{zz}	$3.6 - 4^{a}$	3.66	3.74	3.81	3.89	-0.82	2.60
	B_{dip}		-0.67	-0.60	-0.52	-0.45	1.29	0.39
	B_{orb}		-0.52	-0.45	-0.37	-0.28	-7.96	-2.65
$Fe1^{3+}$	$B_{contact}$		37.65	38.28	38.15	37.86	29.64	31.63
	B_{tot}	~ 50	36.46	37.24	37.26	37.12	22.97	29.37
	δ	~ 0.4	0.33	0.30	0.28	0.25	0.50	0.47
	eQV_{zz}	$1 = 1.5^{4}$	1.46	1.50	1.51	1.52	1.04	-0.30
^a depending	g on rare earth ion							
<u>\/кл</u>		exp.		C	GA+U		LDA	GGA
VIVI	U_{eff} [eV]		5	6	7	8		
	B_{dip}		-3.00	-2.98	-2.95	-2.87	-2.13	-2.83
	B_{orb}	Noncome.	-3.11	-2.99	-2.84	-2.74	-5.47	-4.56
$\mathrm{Fe}^{2.5+}$	$B_{contact}$		41.17	40.96	41.45	41.17	33.10	36.36
	B_{tot}	~ 30	35.06	34.98	35.67	35.56	25.50	28.98
	δ	~ 0.5	0.53	0.52	0.51	0.49	0.60	0.60
	eQV_{zz}	~ 0.1	0.12	0.13	0.13	0.13	0.19	-0.27

Mössbauer:

- $\Delta = \{ e \ Q \ V_{zz} (1 + \eta^2 / 3)^{1/2} \} / 2 ; \qquad \Delta = (E_{\gamma} \Delta_{\nu}) / C$
- $\Delta_{v} = (e Q c V_{zz}) / 2 E_{\gamma}$

 $\Delta = (E_{\gamma} \Delta_{\nu}) / C$ Q(⁵⁷Fe)=0.16 b; E_{\gamma} =14410 eV

• $Vzz [10^{21} V/m^2] = 6 * \Delta_v [mm/s]$

NMR:

- $v_Q = (3 e Q V_{zz}) / \{2 h I (2 I 1)\}$ I.. nuclear spin quantum n.
- $V_{zz} [10^{21} V/m^2] = 4.135 \ 10^{19} v_Q [MHz] / Q [b] \qquad Q(^{49}Ti) = 0.247 \ b$