Installation of WienZ2k,
parallelization, large scale

!'_ applications with WIEN2k

P. Blaha

Technical University of Vienna, Austria

_I
p__—
A

WIEN

@ WIEN2k- hardware

= WIEN2K runs on any Linux platform from PCs, Macs,
workstations, clusters to supercomputers

m Intel 17 4-,6- or 8-core processors with fast memory bus
(2-4 Gb/core, Gbit-network, SATA disks). 1000-1500€ /PC,
= With a few such PCs you have a quite powerful cluster (k-parallel)
= 60 - 100 atom / cell, requires 2-4 Gb RAM/core
m Cluster of Intel Xeon based nodes with infiniband (probably
2x16 cores per node best because of memory access)
= Mpl, Scalapack, ELPA, FFTW
= Up to 1000 atoms/cell

= Fortran90 (dynamical allocation, modules)
m real/complex version (inversion)
= many inaividual moaules, linked together with C-shell or perl-scripts

m Web-based GUI — w2web (perl)

WIEN

@ Required / optional software TU

= f90 compiler: installation support for ifort(+slurm)/gfortran

m BLAS-library: mkl, (openblas+gcc 6.x) - most important for speed-up
s mpi + Scalapack(mkl) + ELPA + FFTW (for mpi-parallel version)

= Linux utilities (not always installed by default)
= [cSh, perl5, ghostscript, gnuplot (bng support), pdf-reader
= Ooctave (structeditor)
= python 2.7.x, numpy (BerryPl)
= opendx (3D-plotting of NMR currents,...)

= Xcrysden or/and VESTA (structure visualization, plotting)
= DFTD3 (van der Waals bonding)

m LIBXC: (http://www.tddft.org/programs/octopus/wiki/index.php/Libxc)

= Wannier90, PHONOPY

= “unsupported software” (see www.wien2k.at; phonon, boltztrap, fold2bloch,
Skeaf, critic2, ...)

http://www.wien2k.at/

@ Installation of WIEN2k

m Register via http://www.wien2k.at
= Create your SWIENROOT directory (e.g. ./WIEN2K)
» Download wien2k XX.tar and examples (executables)
s Uncompress and expand all files using:
w far —xvif wien2k XX.tar
= gQuUNZIp *.gz
= ./expand _lapw
» This leads to the following directories:

= ./SRC (scripts, ug.ps)

= ./SRC aim (programs)

= SRC templates (example inputs)

s SRC _usersquide html (HTML-version of UG)
= example_struct files (examples)

n 7IC

_I
p__—
\

WIEN

= siteconfig_lapw to compile programs (or: tar -xvf SRC_executables.tar)

@ siteconfig_lapw WT l{.

B AT A T I e S S S S S S S S S S S S e S S S S S S S S S S e S S S S S e S S e S S o

* W1 EN *

* site configuration *

RS S S S S S o S S S e o S S S S i S S o S S e S S S S S S S S S S S S S S S S e S S S
S specify a system

specify compiler

specifty compiler options, BLAS and LAPACK

configure Parallel execution

Dimension Parameters

Compile/Recompile

Update a package

Perl path (if not 1n Zusr/bin/perl)

Q Quit

D: define NMATMAX (adjust to your hardware/paging!):
NMATMAX=14000 =» 2Gb (real) or 4Gb (complex) =» 50-100 atoms/unitcell

NUME=1000 - number of eigenvalues (adjust to NMATMAX)

rC 200 1voOOn

@ Compilation le{

= recommendation: Intels Fortran compiler (includes mkl)

not anymore free for non-commercial usage, www.intel.com
= which 1fort > tells you If you can use ifort and which version you have
» usually installed in Zopt/intel/..../bin/intel64 (Is)
» include compilervars.csh (mklvars.csh) in your .bashrc/.cshrc file:
source /opt/intel/compilers_and_libraries 2017/linux/bin/compilervars.sh intel64

m /fort 14 or later (vers. 8.0, early 12.x are buggy and a bit different)

= dynamic linking recommended (depends on ifort version, requires system and
compiler libraries at runtime, needs $LD_LIBRARY_ PATH)

= Intel64 (em64t, 1A32 bit, 1A64 bit (Itanium) - version

« mkl-library: library-names change with every version, see:
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

= Siteconfig has default options and libraries which should work for any
modern ifort version
-O (-01 in buggy versions); -traceback (to get line numbers for runtime errors)
-FR (free format); -assume buffered_io, -qopenmp
ifort versions are often buggy !! (bug in reading unformatted files, -O crashes)

_I
p__—
\

@ compilation 137

s gfortran + openblas + new gcc 6.X (gotolib, ATLAS-BLAS)
= free
= iN sequential mode almost as fast as ifort+mkl (depends on hardware)
= more complicated for mpi parallel version
= Siteconfig has support for:
= /fort (L)
= /fort + SLURM batch system (LS)
= gfortran (LG)

= the standard siteconfig-options should work without modification for
sequential (+ k-point parallel) compilation.

= MpI installation requires that you know your mpi+scalapack+ELPA+ftw
» Siteconfig can search for scalapack/fftw,...
= If you have no compiler, you can use the precompiled
executables

@ userconfig_lapw WT l{.

= Every user must run userconfig_lapw (setup of environment)

= Support for tcsh and bash (requires .cshrc or .bashrc)

n sets PATH to $SWIENROOT, sets several variables and aliases
= SWIENROOT, $SCRATCH, $EDITOR, $PDFREADER, $STRUCTEDIT PATH
= SCRATCH directory (stores large files on local disks): /scratch or ./

pslapw: ps —ef [grep lapw
w /512 /s —als *.in* Iso: [s -als *.output®*
[ss: Is —als *.scr* Isc: [s -als *.ciIm*

= edit directly your .bashrc (.cshrc) file:
= SOMP_NUM_THREADS =1, 2 or 4 (for openmp-+mkl shared mem. parallel)
= Set a suitable prompt: hostname:dir (export PS1="\h:$PWD>")
= $LD LIBRARY PATH (on some systems)
= source ifort configuration (if not done by system admin)

= include configurations (VARIABLES and PATH) for optional products
(XCRYSDEN, PYTHON, PHONOPY, ...)

w2web

&

s W2web: acts as webserver on a userdefined (high) port.

» define user/password and port. (http.//host.domain.xx:5000)
= ONn remote system: ssh -X user@host; w2web
= behind firewall create a ,,ssh-tunnel*:

= SSh -fNL 5000:host:5000 user@host

‘ -

w2web

firewall

s ~/.w2web/hostname/conf/w2web.conf: (configuration file)

» deny=****

= allow=128.130.134.* 128.130.142.10

» define execution types: NAME=commands (eg.: batch=Dbatch < %f)
= Xcrysden requires valid X-Windows when w2web was started

= kill_ w2web; restart w2web

—I
p__—
\

WIEN

http://host.domain.xx:5000/

_I
p__—
\

openMP Parallelization

WIEN

very efficient on 2 (4) cores on a multicore PC (when it fits into memory) !
requires compilation with openMP support (default), fftw-openmp
$OMP_NUM_THREADS=2 (in .bashrc file)

export OMP_NUM_THREADS=2

.machines file:

= 1 hostl (speed:hostname) for k-point parallelization
n 2:host2

» 72 Uncomment for specific OMP-parallelization (overwriting a global OMP _NUM_THREADS)
= Zomp_global:4

m # Or use program-specific parallelization.

= ZOomp_lapw0:4 # atoms, fftw

= ZOomp_lapwl:4 # mkl efficiency limited to ~4

= ZZOmp_lapw2:4

= ZOmp_lapwso:4

= ZOomp_dstart:4 # atoms, PW

= ZO0Mp_sumpara:4

= Zomp_nlvdw:4 # fftw

_I
p__—
A

k-point Parallelization (lapw1+lapw?2)

WIEN

= very efficient parallelization even on loosely coupled PCs (slow network):

« common NFS filesystem (files must be accessible with the same
path on all machines, use /hostl as data-directory on /ost1)
« SSh without password (private/public keys)
= SSh-keygen —t rsa
= append .ssh/authorized keys on remote host with id_rsa.pub of local host

= .machines file:
1:hostl (speed:hostname)
1:hostl
2:host2

= testpara (tests distribution); run_lapw —p
s cases must fit into memory of one PC !

= high NFS load: use local $SCRATCH directory (beware of accidental
overwriting), run_lapw -p -scratch /scratch/pblaha]

s couple with openMP parallelization

Flow of parallel execution

caseklist_1
lapwl_L.def

lapw 1 lapw 1_1.def

case.vector_1
case.output_l
case.energy_l

lapwlpara

case.klist

caseklist_2
lapwl_2.def

lapwl lapwl_2.def

case.vector_2
case.output_2
case.energy_2

caseklist_3
lapwl_3.def

lapw | lapwl_3.det

case.vector 3
case.output 3
Ccase.energy_3

caseenergy_l ‘

caseweigh_1
case vector_ 1

lapw?2 lapw2_Ldef |

case.scf? 1
casecimval_1

TU

WIEN

lapw?2para

caseensrgy_2

Lapw2 lapw2.def 3
Calculate "Fermi”

caseweigh_2
casevector_2

lapw2 lapw2_2def 2

case.sct? 2
caseclmval_2

sumpara stunpa.def 3

case scf2
case.clmval

‘ case.snsergy_3 ‘

caseweigh_3
casevector_3

lapwZ lapw2_3 def 3

case.scf? 3
casecimval_3

—I
p__—
\

WIEN

@ fine-grain mpi-parallelization

= for bigger cases (> 50 atoms) and more than 4 cores

= fast network (gbﬁ, Infiniband, big shared memory machines)

= MPI (you need to know which mpi is installed (mpich, open-mpi, intel-mpi, ..)
s mpif90 or mpiffort

» scalapack (included in ifort): blacs-library depends on your mpi!!
n Nibmkl_blacs I[p64.a or libmkl_blacs openmpi_lp64.a or libmki_blacs intelmpi [p64.a

s FFTW (v. 2 or 3 ; mpi and sequ. version needed, -DFFTW2/3 in Makefiles)
m ELPA (at present use version 2018.11.001; optional, but faster than scalapack)

= .machines file:
1:hostl:4 host2:4 8 mpi-parallel jobs on hostl and host2
lapwO:hostl:4 host2:4 8 parallel jobs; atom-loops only + fft !!!

= Simultaneous k-point and
mpi-parallelization possible

= BN/Rh(111) nanomesh:

cell with 1100 atoms VR
= NMAT=45000-100000; 64 cores, 30min / iteration; scales up to 1024 cores

_I
p__—
A

case.dayfile

WIEN

= check how your computer is performing:

> lapwl -p (07:09:28) starting parallel lapwl at Sat Jun 21 07:09:2 _
4 number_of parallel_jobs OMP_NUM_TREADS=2
ne(1) 197.017u 1.750s 1:46.71 186.2% 0+ 520i0 Opf+0w

ne(1) 198.383u 1.943s 1:47.88 185.6% 0+0k 0+105192i0 Opf+0w
eos(1) 188.838u 1.553s 1:49.79 173.4% 0+0k 17288+106456i0 Opf+0w
eos(1) 187.964u 1.849s 1:42.29 185.5% 0+0k 24+106872i0 Opf+0w
> lapw2 -p (07:11:38) running LAPW2 in parallel mode
ne 60.015u 0.621s 1:10.52 85.9% 0+0k 0+21088i0 Opf+0w
ne 60.686u 0.634s 1:08.63 89.3% 0+0k 0+17688io Opf+0w
e0s 60.428u 0.689s 1:18.04 78.2% 0+0k 14152+17688io Opf+0w
e0s 59.942u 0.598s 1:18.60 77.0% 0+0k 24+17696io0 Opf+0w

> lapwl -p (09:11:14) starting parallel lapwl1 at Mon Jun 23 09:11:14
4 number_of parallel_jobs
susi(1l) 254.613u 2.783s 2:16.95 187.9% 0+0k 0+119736io Opf+0w
susi(1) 257.553u 3.650s 2:18.71 188.3% 0+0k 0+107144io Opf+0w
planck(1) 299.348u 2.369s 3:03.88 162 0+0k 13760+109696i0 Opf+0w
planck(1) 303.426u 2.783s 3:05.92 164.6% 1664+107616io0 Opf+0w
> lapw2 -p -vresp (09:25:17) running LAPW?2 in para
susi 23.078u 0.562s 0:13.24 178.4% 0+0k 0+34984i0 Opf+0 Somebody else is using planck

susi 25.343u 0.552s 0:14.23 181.9% 0+0k 0+31584i0 0 :
planck 22.181u 0.491s 1:54.13 19.8% 0+0 08io Opf+ow OF the network is overloaded

planck 22.334u 0.476s 1:53.93 20.0% 0+0k 88+31608i0 Opf+0w (local SCRATCH)

_I
p__—
\

iterative diagonalization for surfaces:

WIEN

mrun_lapw -p -it (-noHinv # less 1/0)

cyclel (Thu Oct 31 07:20:53 CET 2013) (40/99 to go)

> lapw0 -p (07:20:53) starting parallel lapwO at Thu Oct 31 07:20:53 2013
-------- .machineO : 64 processors
264.604u 21.742s 0:40.76 702.5% 0+0k 591784+49768i0 369pf+0w

> lapwl -up -p -orb (07:21:34) starting parallel lapw1 at Thu Oct 31
-> starting parallel LAPW1 jobs at Thu Oct 31 07:21:34 CET 2013
running LAPW1 in parallel mode (using .machines)

ro9n30 r09n30 rO9n30

6.558u 1.796s 29:08.54 0.4% 0+0k 16+520i0 Opf+0w

cycle 3 (Thu Oct 31 07:50:53 CET 2013) (40/99 to go)

> lapwl -it -up -p -orb -noHinv (09:31:52) starting parallel lapwl at ...
3.411u 0.908s 14:18.31 0.5% 0+0k 72+536i0 Opf+0w

@ batch Systems (see also our fag-page) [U

WIEN

= sSubmit a script to a queuing system (PBS, SGE, SLURM, ...)
= you can only specify total number of cores:
n #$ -pe mpich 32 (specify 32 cores, but you don’t know the hosts)

= get the machine names and write .machines on the fly:
set mpisize_per k=16

set proclist="cat $hostfile_tacc" # this will be different on your computer
set nproc="cat hostfile _tacc | wc -~ # we have some templates on our
seti=1 # fag-page (wien2k.at)

while ($i <= $nproc)

echo -n '1:' >>.machines

@ i1 = $i + $mpisize_per_k
@i2=%i1-1

echo $proclist[$i-$i2] ':1' >>.machines
set i=$il

end

echo 'granularity:1' >>.machines

echo 'extrafine:1' >>.machines

= you can combine k- and mpi-parallelization ($mpisize_per k)
= 32 cores: 2 k-points, 16 mpi-jobs/k-point

—I
p__—
\

@ Getting help i L

= * lapw —h ,help switch“ of all WIEN2k-scripts
= help_lapw:

= opens usersquide.pdf; Use f keyword to search for an item (,,index*)
= html-version of the UG: ($WIENROOT/SRC_usersguide/usersguide.html)

= http://www.wien2k.at/reg_user
= FAQ page with answers to common questions

= Update information.: When you think the program has an error, please
check newest version
n 7extbook section: DFT and the family of LAPW methods by S.Cottenier
= Maliling-list:
= Subscribe to the list (always use the same email)

= full text search of the ,digest” (your questions may have been answered
before)

= posting questions: Provide sufficient information, locate your problem
(case.dayfile, *.error, case.scf, case.outputX).

= ,,My calculation crashed. Please help.”* This will most likely not be answered.

http://www.wien2k.at/reg_user

@ WIEN2k_19.1 TU

WIEN

= always use latest version (bug fixes, improved performance,
new features, better and new utilities)

= /mproved siteconfig_lapw
= better support for gfortran+openblas+gcc

= openMP support for all time consuming steps !

n lapwimpi: new ELPA support !

= non-/local van der Waals option much faster

= new PES module (valence band UPS/XPS)

= new SDDENS module (uses FFT, replacing prepare xsf)
= more efficient mixer

= if you find a problem, please check the mailing list, maybe it
has been fixed by now.

= a new Wien2k version is usually coming at least once a year

	Installation of Wien2k, parallelization, large scale applications with WIEN2k
	WIEN2k- hardware
	Required / optional software
	Installation of WIEN2k
	siteconfig_lapw
	Compilation
	compilation
	userconfig_lapw
	w2web
	openMP Parallelization
	k-point Parallelization (lapw1+lapw2)
	Flow of parallel execution
	fine-grain mpi-parallelization
	case.dayfile
	iterative diagonalization for surfaces:
	batch systems (see also our faq-page)
	Getting help
	WIEN2k_19.1

