Spin-orbit coupling in Wien2k

Robert Laskowski

rolask@ihpc.a-star.edu.sg

Institute of High Performance Computing Singapore

Dirac Hamiltonian

Quantum mechanical description of electrons, consistent with the theory of special relativity.

$$H_D = c \vec{\alpha} \cdot \vec{p} + \beta m c^2 + V$$

 ${\rm H}_{_{\rm D}}$ and the wave function are 4-dimensional objects

Dirac Hamiltonian

Dirac equation in spherical potential

Solution for spherical potential

 $\Psi = \begin{pmatrix} g_{\kappa}(r)\chi_{\kappa\sigma} \\ -i f_{\kappa}(r)\chi_{\kappa\sigma} \end{pmatrix} \longrightarrow \text{ combination of spherical harmonics and spinors}$

$$\kappa = -s(j+1/2)$$

 $j = l + s/2$
 $s = +1, -1$

$$\frac{dg_{\kappa}}{dr} = -\frac{(\kappa+1)}{r} g_{\kappa} + 2 Mcf_{\kappa}$$
$$\frac{df_{\kappa}}{dr} = \frac{1}{c} (V-E) g_{\kappa} + \frac{\kappa-1}{r} f_{\kappa}$$

Radial Dirac equation

Dirac equation in spherical potential

Radial Dirac equation

$$\frac{dg_{\kappa}}{dr} = -\frac{(\kappa+1)}{r}g_{\kappa} + 2Mcf_{\kappa}$$
$$\frac{df_{\kappa}}{dr} = \frac{1}{c}(V-E)g_{\kappa} + \frac{\kappa-1}{r}f_{\kappa}$$

 κ dependent term, for a constant *I*, κ depends on the sign of *s*

substitute f from first eq. into the second eq.

$$-\frac{1}{2M}\left[\frac{d^{2}g_{\kappa}}{dr^{2}}+\frac{2}{r}\frac{dg_{\kappa}}{dr}-\frac{l(l+1)}{r^{2}}g_{\kappa}\right]-\frac{dV}{dr}\frac{dg_{\kappa}}{dr}\frac{1}{4M^{2}c^{2}}+Vg_{\kappa}-\frac{\kappa-1}{r}\frac{dV}{dr}\frac{g_{\kappa}}{4M^{2}c^{2}}=Eg_{\kappa}$$

scalar relativistic approximation

spin-orbit coupling

Implementation: core electrons

Core states are calculated with spin-compensated Dirac equation

For spin polarized potential – spin up and spin down radial functions are calculated separately, the density is averaged according to the occupation number specified in *case.inc* file

							1s ^{1/2}	9 0.00	(N,KAPPA,OCCUP)		
						2p ^{1/2}		2, -1, 2 2, 1, 2	(N,KAPPA,OCCUP) (N,KAPPA,OCCUP)		
Relatio	ons be	tween	quantu	2,-2,4 3,-1,2	(N,KAPPA,OCCUP) (N,KAPPA,OCCUP)						
		j=l+s/2		κ= -s(j +½)		occupation		3, 1,2	(N,KAPPA,UCCUP) (N.KAPPA.OCCUP)		
	I	s=-1	s=+1	s=-1	s=+1	s=-1	s=+1	3, 2,4	(N,KAPPA,OCCUP)		
S	0		1/2		-1		2	3,-3,6	(N,KAPPA,OCCUP)		
р	1	1/2	3/2	1	-2	2	4				
d	2	3/2	5/2	2	-3	4	6	Core levels configuration			
f	3	5/2	7/2	3	-4	6	8	(<i>case.inc</i> for Ru atom)			

Implementation: valence electrons

Valence electrons inside atomic spheres are treated within scalar relativistic approximation (*Koelling and Harmon, J. Phys C 1977*) if *RELA* is specified in *struct* file

$$\frac{dP}{dr} - \frac{1}{r}P = 2 McQ$$
$$\frac{dQ}{dr} - \frac{1}{r}Q = \left[l\frac{(l+1)}{2}Mcr^{2} + \frac{(V-\epsilon)}{c}\right]P$$

radial equations of Koelling and Harmon (spherical potential)

- no κ dependency of the wave function, (I,m,s) are good quantum numbers
- all relativistic effects are included except SOC
 - small component enters normalization and calculation of charge inside spheres
 - augmentation with large component only
 - SOC can be included in "second variation"

Valence electrons in interstitial region are non-relativistic

Effects of RELA

- 1s contracts due to relativistic mass enhancement
- 2s 6s contract due to orthogonality to 1s

$$MV^{2}/r = Ze/r^{2}$$
 $M = m/\sqrt{1-(v/c)^{2}}$

centripetal force

v ~ Z: Au Z = 79;M = 1.2 m

8

Effects of RELA

orbital expansion of Au d orbitals

Higher I-quantum number states expand due to better shielding of the core charge from contracted s-states (effect is larger for higher states).

Spin orbit-coupling

$$H_{P} = -\frac{\hbar}{2m} \nabla^{2} + V_{ef} + \zeta (\vec{\sigma} \cdot \vec{l}) \dots \qquad \zeta = \frac{1}{2Mc^{2}} \frac{1}{r^{2}} \frac{dV_{MT}(r)}{dr}$$

 2x2 matrix in spin space, due to Pauli spin operators, wave function is a 2-component vector (spinor)

spin up
$$H_P (\Psi_1) = \varepsilon (\Psi_1)$$
 spin down $H_P (\Psi_2) = \varepsilon (\Psi_2)$

Pauli matrices:

$$\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix}$$

$$\sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
$$\sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

IJ

$$\begin{pmatrix} -\frac{\hbar}{2m} \nabla^2 + V_{ef} & 0 \\ 0 & -\frac{\hbar}{2m} \nabla^2 + V_{ef} \end{pmatrix} + \begin{pmatrix} \zeta l_z + \dots & \zeta (l_x - il_y) \\ \zeta (l_x + il_y) & -\zeta l_z + \dots \end{pmatrix} \psi = \varepsilon \psi$$

Spin orbit-coupling

- SOC is active only inside atomic spheres, only spherical potential (V_{MT}) is taken into account, in the polarized case spin up and down parts are averaged
- eigenstates are not pure spin states
- off-diagonal term of the spin density matrix do not enter SCF cycle
- SOC is added in a second variation (*lapwso*):

first diagonalization (lapw1) $H_1\psi_1 = \varepsilon_1\psi_1$ second diagonalization (lapwso) $(H_1 + H_{SO})\psi = \varepsilon\psi$ N is much smaller then the basis size in lapw1!!

SOC splitting of p states

 $p_{1/2}$ (κ =1) different behavior than nonrelativistic p-state (density is diverging at nucleus), thus there is a need for extra basis function ($p_{1/2}$ orbital)

Electronic structure of fcc Th, SOC with 6p_{1/2} local orbital

Au atomic spectra

14

SOC in magnetic systems

SOC couples magnetic moment to the lattice

direction of the exchange field matters (input in case.inso)

symmetry operations acts in real and spin space

- number of symmetry operations may be reduced
- no *time* inversion
- initso_lapw (must be executed) detects new symmetry setting

SOC in Wien2k

- run(sp)_lapw -so script:
- **x** *lapw1* (increase E-max for more eigenvectors in second diag.)
- x lapwso (second diagonalization)
- x lapw2 -so (SOC ALWAYS needs complex lapw2 version)

case.inso file:

Ilmax,ipr,kpot
emin,emax (output energy window)
direction of magnetization (lattice vectors)
number of atoms for which RLO is added
atom number,e-lo,de (case.in1), repeat NX times
number of atoms for which SO is switched off; list of atoms

 $p_{1/2}$ orbitals, use with caution !!

Summary: relativistic effects

- core electrons Dirac equation using spherical part of the total potential (dirty trick for spin polarized systems)
- valence electrons scalar relativistic approximation is used as default (RELA switch in *case.struct*),
- SOC for valence electrons *lapwso* has to be included in SCF cycle (*run -so/run_sp -so*), atomic spheres only
- limitations: not all programs are compatible with SOC, for instance: no forces with SOC (yet)

magnetism, non-collinear case

 WIEN2k can do only nonmagnetic or collinear magnetic structures

$$\psi_{\uparrow} = \begin{pmatrix} \psi_{1} \\ 0 \end{pmatrix}, \quad \psi_{\downarrow} = \begin{pmatrix} 0 \\ \psi_{2} \end{pmatrix}$$

noncollinear magnetic structures, use WIENNCM

Pauli Hamiltonian

$$H_{P} = -\frac{\hbar}{2m} \nabla^{2} + V_{ef} + \mu_{B} \vec{\sigma} \cdot \vec{B}_{ef} + \zeta (\vec{\sigma} \cdot \vec{l}) \dots$$

- 2x2 matrix in spin space, due to Pauli spin operators
- wave function is a 2-component vector (spinor)

Pauli matrices: $\sigma_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\sigma_{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Pauli Hamiltonian

- exchange-correlation potential V_{xc} and magnetic field B_{xc} are defined within DFT LDA or GGA

Exchange and correlation

from DFT LDA exchange-correlation energy:

$$E_{xc}(n,\vec{m}) = \int n \epsilon_{xc}(n,\vec{m}) dr^3$$

local function of n and m

- definition of V_{cx} and B_{xc} :

$$V_{xc} = \frac{\partial E_{xc}(n, \vec{m})}{\partial n} \qquad \vec{B}_{xc} = \frac{\partial E_{xc}(n, \vec{m})}{\partial \vec{m}} \qquad \text{functional derivatives}$$

• LDA expression for V_{cx} and B_{xc} :

$$V_{xc} = \epsilon_{xc}(n, \vec{m}) + n \frac{\partial \epsilon_{xc}(n, \vec{m})}{\partial n}$$

 $\vec{B}_{xc} = n \frac{\partial \epsilon_{xc}(n, \vec{m})}{\partial m} \hat{m}$

Non-collinear case

$$H_{P} = -\frac{\hbar}{2m} \nabla^{2} + V_{ef} + \mu_{B} \vec{\sigma} \cdot \vec{B}_{ef} + \zeta \left(\vec{\sigma} \cdot \vec{l} \right) \dots$$

- direction of magnetization vary in space
- spin-orbit coupling is present

$$-\frac{\hbar}{2m}\nabla^{2}+V_{ef}+\mu_{B}B_{z}+\dots \qquad \mu_{B}(B_{x}-iB_{y})$$
$$\mu_{B}(B_{x}+iB_{y}) \qquad -\frac{\hbar}{2m}\nabla^{2}+V_{ef}+\mu_{B}B_{z}+\dots$$
$$\psi = \varepsilon \psi$$

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}, \quad \psi_{1,} \psi_2 \neq 0$$

- solutions are not pure spinors
- non-collinear magnetic moments

Collinear case

$$H_{P} = -\frac{\hbar}{2m} \nabla^{2} + V_{ef} + \mu_{B} \vec{\sigma} \cdot \vec{B}_{ef} + \zeta (\vec{\sigma} \cdot \vec{I}) \dots$$

- magnetization in Z direction, B_x and $B_y=0$
- spin-orbit coupling is not present

$$\begin{pmatrix} -\frac{\hbar}{2m} \nabla^2 + V_{ef} + \mu_B B_z + \dots & 0 \\ 0 & -\frac{\hbar}{2m} \nabla^2 + V_{ef} + \mu_B B_z + \dots \end{pmatrix} \psi = \varepsilon \psi$$

$$= \left(\Psi_1 \right), \quad \psi_1 = \left(\begin{array}{c} 0 \end{array} \right), \quad \varepsilon_2 \neq \varepsilon_1 \quad \bullet \text{ solutions are pure spinors}$$

$$\Psi_{\uparrow} = \begin{pmatrix} \Psi_1 \\ 0 \end{pmatrix}, \ \Psi_{\downarrow} = \begin{pmatrix} 0 \\ \Psi_2 \end{pmatrix}, \ \epsilon_{\uparrow} \neq \epsilon_{\downarrow}$$
• solutions are pure spinors
• collinear magnetic moments

Non-magnetic case

$$H_{P} = -\frac{\hbar}{2m} \nabla^{2} + V_{ef} + \mu_{B} \vec{o} \cdot \vec{B}_{ef} + \zeta(\vec{o} \cdot \vec{I}) \dots$$

- no magnetization present, B_x , B_y and $B_z=0$
- spin-orbit coupling is not present $\begin{pmatrix}
 -\frac{\hbar}{2m}\nabla^2 + V_{ef} + \dots & 0 \\
 0 & -\frac{\hbar}{2m}\nabla^2 + V_{ef} + \dots
 \end{pmatrix} \psi = \varepsilon \psi$

$$\Psi_{\uparrow} = \begin{pmatrix} \Psi \\ 0 \end{pmatrix}, \ \Psi_{\downarrow} = \begin{pmatrix} 0 \\ \Psi \end{pmatrix}, \ \epsilon_{\uparrow} = \epsilon_{\downarrow}$$

- solutions are pure spinors
- degenerate spin solutions

Magnetism and Wien2k

• Wien2k can only handle collinear or non-magnetic cases

Magnetism and Wien2k

in NCM case both part of the spinor are treated simultaneously

$$\hat{n} = \sum_{nk} \begin{pmatrix} \Psi_{\uparrow nk} \\ \Psi_{\downarrow nk} \end{pmatrix}^* (\Psi_{\uparrow nk} \Psi_{\downarrow nk})$$
$$m_z = n_{\uparrow\uparrow} - n_{\downarrow\downarrow} \neq 0$$
$$m_x = \frac{1}{2} (n_{\uparrow\downarrow} + n_{\downarrow\uparrow}) \neq 0$$
$$m_x = i \frac{1}{2} (n_{\uparrow\downarrow} - n_{\downarrow\uparrow}) \neq 0$$

Non-collinear calculations

- in the case of non-collinear arrangement of spin moment WienNCM (Wien2k clone) has to be used
 - code is based on Wien2k (available for Wien2k users)
 - structure and usage philosophy similar to Wien2k
 - independent source tree, independent installation
- WienNCM properties:
 - real and spin symmetry (simplifies SCF, less k-points)
 - constrained or unconstrained calculations (optimizes magnetic moments)
 - SOC is applied in the first variational step, LDA+U

WienNCM - implementation

• basis set – mixed spinors (Yamagami, PRB (2000); Kurtz PRB (2001)

interstities
$$\mathcal{P}_{\vec{G}\sigma} = e^{i(\vec{G}+\vec{k})\cdot\vec{r}}\chi_{\sigma}$$
 $\chi_{\sigma} = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 1 \end{pmatrix}$
 $\varphi_{\vec{G}\sigma}^{APW} = \sum_{\sigma_{\alpha}} \sum_{lm} \left(A_{lm}^{\vec{G}\sigma\sigma_{\alpha}} u_{l}^{\sigma_{\alpha}} + B_{lm}^{\vec{G}\sigma\sigma_{\alpha}} \dot{u}_{l}^{\sigma_{\alpha}} \right) Y_{lm}\chi_{\sigma_{\alpha}}$
spheres:
 $\varphi_{\vec{G}\sigma_{\alpha}}^{APW} = \left(A_{lm}^{\vec{G}\sigma\sigma_{\alpha}} u_{l}^{\sigma_{\alpha}} + B_{lm}^{\vec{G}\sigma\sigma_{\alpha}} \dot{u}_{l}^{\sigma_{\alpha}} + C_{lm}^{\vec{G}\sigma\sigma_{\alpha}} u_{2,l}^{\sigma_{\alpha}} \right) Y_{lm}\chi_{\sigma_{\alpha}}$

m

- real and spin space parts of symmetry op. are not independent
 - symmetry treatment like for SOC always on
 - tool for setting up magnetic configuration
 - concept of magnetic and non-magnetic atoms

WienNCM implementation

Hamiltonian inside $\hat{H} = -\frac{\hbar}{2m}\nabla^2 + \hat{V} + \hat{H}_{so} + \hat{H}_{orb} + \hat{H}_c$ spheres: AMA and full NC $\hat{V}_{FULL} = \begin{pmatrix} V_{\uparrow\uparrow} & V_{\downarrow\uparrow} \\ V_{\uparrow\downarrow} & V_{\downarrow\downarrow} \end{pmatrix}$ $\hat{V}_{AMA} = \begin{pmatrix} V_{\uparrow\uparrow} & 0 \\ 0 & V_{\downarrow\downarrow} \end{pmatrix}$ calculation $\hat{H}_{so} = \xi \vec{\sigma} \cdot \vec{l} = \xi \begin{pmatrix} \hat{l}_z & \hat{l}_x - i \hat{l}_y \\ \hat{l}_y + i \hat{l}_y & -\hat{l} \end{pmatrix}$ SOC in first diagonalization $\hat{H}_{orb} = \sum_{mm'} \begin{pmatrix} |m\rangle V_{mm'}^{\uparrow} \langle m'| & 0\\ 0 & |m\rangle V_{mm'}^{\downarrow} \langle m'| \end{pmatrix}$ diagonal orbital field

constraining field

$$\hat{H}_{c} = \mu_{B}\vec{\sigma}\cdot\vec{B}_{c} = \begin{pmatrix} 0 & \mu_{B}(B_{cx} - iB_{cy}) \\ \mu_{B}(B_{cx} + iB_{cy}) & 0 \end{pmatrix}$$

NCM Hamiltonian

- size of the Hamiltonian/overlap matrix is doubled comparing to Wien2k
- computational cost increases !!!

WienNCM – spin spirals

- transverse spin wave $\alpha = \vec{R} \cdot \vec{q}$ $\vec{m}^{n} = m \left(\cos(\vec{q} \cdot \vec{R}^{n}), \sin(\vec{q} \cdot \vec{R}^{n}) \sin(\theta), \cos(\theta) \right)$
- spin-spiral is defined by a vector q given in reciprocal space and,
- an angle $\boldsymbol{\Theta}$ between magnetic moment and rotation axis
- rotation axis is arbitrary (no SOC), hard-coded as Z

•

Translational symmetry is lost !!!

WienNCM – spin spirals

- generalized Bloch theorem
 - generalized translations are symmetry operation of the H

$$T_{n} = \left\{ -\vec{q} \cdot \vec{R}_{n} | \epsilon | \vec{R}_{n} \right\}$$
$$T_{n}^{\dagger} H(\vec{r}) T_{n} = U^{\dagger}(-\vec{q} \cdot \vec{R}_{n}) H(\vec{r} + \vec{R}_{n}) U(-\vec{q} \cdot \vec{R}_{n})$$

group of
$$T_n$$
 is Abelian

$$\begin{aligned} & \psi_{\vec{k}}(\vec{r}) = e^{i(\vec{k}\cdot\vec{r})} \begin{pmatrix} e^{\frac{i\vec{q}\cdot\vec{r}}{2}} u^{\dagger}(\vec{r}) \\ e^{\frac{-i\vec{q}\cdot\vec{r}}{2}} u^{\dagger}(\vec{r}) \end{pmatrix} & 1 \text{-d representations,} \\ & \text{Bloch Theorem} \\ & T_n \psi_{\vec{k}}(\vec{r}) = U(-\vec{q}\cdot\vec{R}) \psi_{\vec{k}}(\vec{r}+\vec{R}) = e^{i\vec{k}\cdot\vec{r}} \psi_{\vec{k}}(\vec{r})
\end{aligned}$$

• efficient way for calculation of spin waves, only one unit cell is necessary for even incommensurate wave

Usage

- generate atomic and magnetic structure
 - 1) create atomic structure
 - 2) create magnetic structure

need to specify only directions of magnetic atoms use utility programs: **ncmsymmetry**, **polarangles**, ...

- run **initncm** (initialization script)
- **xncm** (WienNCM version of **x** script)
- runncm (WienNCM version of run script)
- find more in manual

WienNCM – case.inncm file

• case.inncm - magnetic structure file

how to run it ?

• similar to WIEN2k (*initnem*, *runnem*, *xnem* ...)

runncm_lapw -p -cc 0.0001 ...

- xncm lapw0
- xncm lapw1
- xncm lapw2
- xncm lcore
- xncm mixer

Magnetic structure of Mn₃Sn

	SO	fm	afm	ncm 1	ncm 2	ncm 3	ncm 4
$E_{fm} - E \left[Ry \right]$	-	0.0	0.0131	0.0444	0.0444	0.0444	0.0444
	+	0.0	0.0133	0.0441	0.0439	0.0444	0.0445
$M_s \left[\mu_B \right]$	-	3.012	2.684	3.037	3.037	3.037	3.037
	+	3.008	2.679	3.034	3.034	3.038	3.037
efg on Mn	-	-1.657	-2.111	-0.894	-0.894	-0.894	-0.894
$[10^{21}V/m^2]$	+	-1.661	-2.119	-0.892	-0.899	-0.891	-0.894
						-0.898	-0.881
hff on Mn	-	-309.9	-153.1	31.2	31.2	31.2	31.2
[kGauss]	+	-309.6	-152.9	31.1	31.5	31.5	30.9
						32.2	32.1

y Fe, spin spiral

Spin density maps for $q = 0.6 (0-\Gamma, 1-X)$