Spin-orbit coupling in Wien2k

Robert Laskowski

rolask@ihpc.a-star.edu.sg

Institute of High Performance Computing **Singapore**

Dirac Hamiltonian

Quantum mechanical description of electrons, consistent with the theory of special relativity.

$$
H_D = c \, \vec{\alpha} \cdot \vec{p} + \beta \, mc^2 + V
$$

Pauli matrices:
\n
$$
\alpha_{k} = \begin{pmatrix} 0 & \sigma_{k} \\ \sigma_{k} & 0 \end{pmatrix} \quad \beta_{k} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \sigma_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix},
$$
\n
$$
\sigma_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
$$

 H_n and the wave function are 4-dimensional objects

Dirac Hamiltonian

Dirac equation in spherical potential

Solution for spherical potential

 $\Psi = \begin{vmatrix} -1 & 0 \\ 0 & -1 \end{vmatrix}$

 $g_{\scriptscriptstyle \mathrm{K}}(r) \chi_{\scriptscriptstyle \mathrm{K}\sigma}$

 $-i f_{\kappa}(r) \chi_{\kappa\sigma}$ combination of spherical harmonics and spinors

$$
\kappa = -s(j+1/2)
$$

$$
j=l+s/2
$$

$$
s = +1, -1
$$

$$
\frac{dg_{\kappa}}{dr} = -\frac{(\kappa + 1)}{r} g_{\kappa} + 2 Mcf_{\kappa}
$$

$$
\frac{df_{\kappa}}{dr} = \frac{1}{c} (V - E) g_{\kappa} + \frac{\kappa - 1}{r} f_{\kappa}
$$

Radial Dirac equation

Dirac equation in spherical potential

Radial Dirac equation

$$
\frac{dg_{\kappa}}{dr} = -\frac{(\kappa+1)}{r}g_{\kappa} + 2\,Mcf_{\kappa}
$$
\n
$$
\frac{df_{\kappa}}{dr} = \frac{1}{c}(V - E)g_{\kappa} + \frac{\kappa - 1}{r}f_{\kappa}
$$

κ dependent term, for a constant *l*, *κ* depends on the sign of *s*

substitute f from first eq. into the second eq.

$$
-\frac{1}{2M}\left[\frac{d^{2}g_{\kappa}}{dr^{2}}+\frac{2}{r}\frac{dg_{\kappa}}{dr}-\frac{l(l+1)}{r^{2}}g_{\kappa}\right]-\frac{dV}{dr}\frac{dg_{\kappa}}{dr}\frac{1}{4M^{2}c^{2}}+Vg_{\kappa}-\frac{\kappa-1}{r}\frac{dV}{dr}\frac{g_{\kappa}}{4M^{2}c^{2}}=Eg_{\kappa}
$$

scalar relativistic approximation spin-orbit coupling

Implementation: core electrons

Core states are calculated with spin-compensated Dirac equation

For spin polarized potential – spin up and spin down radial functions are calculated separately, the density is averaged according to the occupation number specified in *case.inc* file

Implementation: valence electrons

Valence electrons inside atomic spheres are treated within scalar relativistic approximation (*Koelling and Harmon, J. Phys C 1977*) if *RELA* is specified in *struct* file

$$
\frac{dP}{dr} - \frac{1}{r}P = 2\,McQ
$$
\n
$$
\frac{dQ}{dr} - \frac{1}{r}Q = \left[l\frac{(l+1)}{2}Mcr^2 + \frac{(V-\epsilon)}{c} \right]P
$$

radial equations of Koelling and Harmon (spherical potential)

- no κ dependency of the wave function, (l,m,s) are good quantum numbers
- all relativistic effects are included except SOC
- small component enters normalization and calculation of charge inside spheres
- augmentation with large component only
- SOC can be included in "second variation"

Valence electrons in interstitial region are non-relativistic

Effects of *RELA*

- 1s contracts due to relativistic mass enhancement
- 2s 6s contract due to orthogonality to 1s

$$
MV^2/r = Ze/r^2 \qquad \qquad M = m/\sqrt{1 - (v/c)^2}
$$

centripetal force

v ~ Z: Au Z = 79;M = 1.2 m

8

Effects of *RELA*

orbital expansion of Au d orbitals

9 Higher l-quantum number states expand due to better shielding of the core charge from contracted s-states (effect is larger for higher states).

Spin orbit-coupling

$$
H_{P} = -\frac{\hbar}{2m} \nabla^{2} + V_{ef} + \zeta (\vec{\sigma} \cdot \vec{l}) ... \qquad \zeta = \frac{1}{2Mc^{2}} \frac{1}{r^{2}} \frac{dV_{MT}(r)}{dr}
$$

• 2x2 matrix in spin space, due to Pauli spin operators, wave function is a 2-component vector (spinor)

spin up\n
$$
H_P \left(\frac{\psi_1}{\psi_2}\right) = \varepsilon \left(\frac{\psi_1}{\psi_2}\right)
$$
\nspin down

Pauli matrices:

$$
\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

$$
\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}
$$

$$
\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
$$

Spin structure of the Hamiltonian with SOC

\n
$$
\begin{pmatrix}\n-\frac{\hbar}{2m} \nabla^2 + V_{ef} & 0 \\
0 & -\frac{\hbar}{2m} \nabla^2 + V_{ef}\n\end{pmatrix} + \begin{pmatrix}\n\zeta l_z + \dots & \zeta (l_x - il_y) \\
\zeta (l_x + il_y) & -\zeta l_z + \dots\n\end{pmatrix} \psi = \varepsilon \psi
$$

Spin orbit-coupling

- SOC is active only inside atomic spheres, only spherical potential (V_{out}) is taken into account, in the polarized case spin up and down parts are averaged
- eigenstates are not pure spin states
- off-diagonal term of the spin density matrix do not enter SCF cycle
- SOC is added in a second variation (*lapwso*):

 $H_1 \psi_1 = \varepsilon_1 \psi_1$ ∑ *i N* $\int \left(\delta_{ij}\varepsilon_1^j+\left\langle \psi_1^j\right|H_{SO}\right|\psi_1^i\right)\right)\left\langle \psi_1^i\right|\psi\right\rangle\!=\!\varepsilon\left\langle \psi_1^j\right|\psi\right\rangle\,.$ first diagonalization (lapw1) $(H_1+H_{SO})\psi = \varepsilon \psi$ second diagonalization (lapwso) second diagonalization sum includes both up/down spin states N is much smaller then the basis size in lapw1!!

SOC splitting of p states

 $p_{1/2}$ (k=1) different behavior than nonrelativistic p-state (density is diverging at nucleus), thus there is a need for extra basis function $(p_{1/2}$ orbital)

Electronic structure of fcc Th, SOC with 6p_{1/2} local orbital

Au atomic spectra

14

SOC in magnetic systems

• **SOC couples magnetic moment to the lattice**

– direction of the exchange field matters (input in case.inso)

• symmetry operations acts in real and spin space

- number of symmetry operations may be reduced
- no *time* inversion
- *initso_lapw* (must be executed) detects new symmetry setting

SOC in Wien2k

- run(sp)_lapw -so script:
- *x lapw1* (increase E-max for more eigenvectors in second diag.)
- *x lapwso* (second diagonalization)
- *x lapw2 –so* (SOC ALWAYS needs complex lapw2 version)

case.inso file:

 -10.0000 1.50000 emin,emax (output energy window) 0. 0. 1. direction of magnetization (lattice vectors) 1 number of atoms for which RLO is added 2 -0.97 0.005 atom number, e-lo, de (case.in1), repeat NX times 0 0 0 0 0 0 \sim | number of atoms for which SO is switched off; list of atoms

 ${\sf p}_{_{1/2}}$ orbitals, use with caution !!

Summary: relativistic effects

- core electrons Dirac equation using spherical part of the total potential (dirty trick for spin polarized systems)
- valence electrons scalar relativistic approximation is used as default (RELA switch in *case.struct*),
- SOC for valence electrons *lapwso* has to be included in SCF cycle (*run -so/run_sp -so*), atomic spheres only
- limitations: not all programs are compatible with SOC, for instance: no forces with SOC (yet)

magnetism, non-collinear case

• WIEN2k can do only nonmagnetic or collinear magnetic structures

$$
\begin{array}{c}\n\text{S}\n\end{array}\n\begin{array}{c}\n\text{S}\n\end{array}
$$

• noncollinear magnetic structures, use WIENNCM

$$
\frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta}
$$

Pauli Hamiltonian

$$
H_P = -\frac{\hbar}{2m} \nabla^2 + V_{ef} + \mu_B \vec{\sigma} \cdot \vec{B}_{ef} + \zeta (\vec{\sigma} \cdot \vec{l}) \dots
$$

- 2x2 matrix in spin space, due to Pauli spin operators
- wave function is a 2-component vector (spinor)

Pauli Hamiltonian

• exchange-correlation potential V_{xc} and magnetic field B_{xc} are defined within DFT LDA or GGA

Exchange and correlation

• from DFT LDA exchange-correlation energy:

$$
E_{xc}(n,\vec{m}) = \int n \epsilon_{xc}(n,\vec{m}) dr^3
$$

local function of n and m

• definition of V_{cx} and B_{xc} :

$$
V_{xc} = \frac{\partial E_{xc}(n, \vec{m})}{\partial n} \qquad \vec{B}_{xc} = \frac{\partial E_{xc}(n, \vec{m})}{\partial \vec{m}} \qquad \text{functional derivatives}
$$

• LDA expression for V_{cx} and B_{xc} :

$$
V_{xc} = \epsilon_{xc}(n, \vec{m}) + n \frac{\partial \epsilon_{xc}(n, \vec{m})}{\partial n}
$$

Non-collinear case

$$
H_{p} = -\frac{\hbar}{2m} \nabla^{2} + V_{ef} + \mu_{B} \vec{\sigma} \cdot \vec{B}_{ef} + \zeta (\vec{\sigma} \cdot \vec{l}) ...
$$

- direction of magnetization vary in space
- spin-orbit coupling is present

$$
\begin{pmatrix}\n\frac{\hbar}{2m} \nabla^2 + V_{ef} + \mu_B B_z + \dots & \mu_B (B_x - iB_y) \\
\mu_B (B_x + iB_y) & -\frac{\hbar}{2m} \nabla^2 + V_{ef} + \mu_B B_z + \dots\n\end{pmatrix} \psi = \varepsilon \psi
$$

$$
\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}, \ \psi_1, \psi_2 \neq 0
$$

- solutions are not pure spinors
- non-collinear magnetic moments

Collinear case

$$
H_{p} = -\frac{\hbar}{2m} \nabla^{2} + V_{ef} + \mu_{B} \vec{\sigma} \cdot \vec{B}_{ef} + \sum \vec{\sigma} \cdot \vec{\Delta} \cdot \vec{\Delta}.
$$

- magnetization in Z direction, B_x and $B_y=0$
- spin-orbit coupling is not present

 Ψ

$$
\begin{pmatrix}\n-\frac{\hbar}{2m}\nabla^2 + V_{ef} + \mu_B B_z + \dots & 0 \\
0 & -\frac{\hbar}{2m}\nabla^2 + V_{ef} + \mu_B B_z + \dots\n\end{pmatrix}\psi = \varepsilon \psi
$$
\n
$$
\psi = \varepsilon \psi
$$
\n
$$
\psi = \left(\frac{\psi_1}{0}\right), \quad \psi_1 = \begin{pmatrix} 0 \\ \psi_2 \end{pmatrix}, \quad \varepsilon_1 \neq \varepsilon_1 \quad \text{solutions are pure spinors}
$$

collinear magnetic moments

Non-magnetic case

$$
H_{P} = -\frac{\hbar}{2m} \nabla^{2} + V_{ef} + \mu_{B} \vec{\sigma} \cdot \vec{B}_{ef} + \zeta \vec{\sigma} \cdot \vec{L} \dots
$$

- no magnetization present, B_x , B_y and B_z =0
	- spin-orbit coupling is not present \mathbb{R} − \hbar 2m $\nabla^2 + V_{ef} + ...$ 0 0 − \hbar 2m $\nabla^2 + V_{ef} + \ldots$ $\psi = \epsilon \psi$

$$
\psi_{\uparrow} = \begin{pmatrix} \psi \\ 0 \end{pmatrix}, \ \psi_{\downarrow} = \begin{pmatrix} 0 \\ \psi \end{pmatrix}, \ \ \epsilon_{\uparrow} = \epsilon_{\downarrow}
$$

- solutions are pure spinors
- degenerate spin solutions

Magnetism and Wien2k

• Wien2k can only handle collinear or non-magnetic cases

Magnetism and Wien2k

• in NCM case both part of the spinor are treated simultaneously

$$
\hat{n} = \sum_{nk} \left(\psi_{\uparrow nk}\right)^* \left(\psi_{\uparrow nk} \psi_{\downarrow nk}\right)
$$
\n
$$
m_z = n_{\uparrow\uparrow} - n_{\downarrow\downarrow} \neq 0
$$
\n
$$
m_x = \frac{1}{2} \left(n_{\uparrow\downarrow} + n_{\downarrow\uparrow}\right) \neq 0
$$
\n
$$
m_x = i\frac{1}{2} \left(n_{\uparrow\downarrow} - n_{\downarrow\uparrow}\right) \neq 0
$$

Non-collinear calculations

- **in the case of non-collinear arrangement of spin moment WienNCM (Wien2k clone) has to be used**
	- code is based on Wien2k (available for Wien2k users)
	- structure and usage philosophy similar to Wien2k
	- independent source tree, independent installation
- **WienNCM properties:**
	- real and spin symmetry (simplifies SCF, less k-points)
	- constrained or unconstrained calculations (optimizes magnetic moments)
	- SOC is applied in the first variational step, LDA+U

WienNCM - implementation

• **basis set – mixed spinors** (Yamagami, PRB (2000); Kurtz PRB (2001)

$$
\begin{aligned}\n\text{interestities}\n\mathcal{P}_{\vec{G}\sigma} &= e^{i(\vec{G} + \vec{k}) \cdot \vec{r}} \chi_{\sigma} & \chi_{\sigma} &= \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\
\varphi_{\vec{G}\sigma}^{APW} &= \sum_{\sigma_{\alpha}} \sum_{lm} \left(A_{lm}^{\vec{G}\sigma\sigma_{\alpha}} u_{l}^{\sigma_{\alpha}} + B_{lm}^{\vec{G}\sigma\sigma_{\alpha}} \dot{u}_{l}^{\sigma_{\alpha}} \right) Y_{lm} \chi_{\sigma_{\alpha}} \\
\text{spheres:} & \varphi_{\vec{G}\sigma_{\alpha}}^{APW} = \left(A_{lm}^{\vec{G}\sigma\sigma_{\alpha}} u_{l}^{\sigma_{\alpha}} + B_{lm}^{\vec{G}\sigma\sigma_{\alpha}} \dot{u}_{l}^{\sigma_{\alpha}} + C_{lm}^{\vec{G}\sigma\sigma_{\alpha}} u_{2,l}^{\sigma_{\alpha}} \right) Y_{lm} \chi_{\sigma_{\alpha}}\n\end{aligned}
$$

m

- real and spin space parts of symmetry op. are not independent
	- symmetry treatment like for SOC always on
	- tool for setting up magnetic configuration
	- concept of magnetic and non-magnetic atoms

WienNCM implementation

• Hamiltonian inside spheres: $\hat{H} = \hbar$ 2m $\nabla^2+\hat{V}+\hat{H}_{so}+\hat{H}_{orb}+\hat{H}$ AMA and full NC $\hat{V}_{FULL} = \begin{pmatrix} V \ V \end{pmatrix}$ calculation $V_{\uparrow\uparrow}$ $V_{\downarrow\uparrow}$ $V_{\uparrow\downarrow}$ $V_{\downarrow\downarrow}$ \hat{V} _{AMA} = $\left| \right|$ ^V $V_{\uparrow\uparrow} = 0$ $0 \left| V_{\downarrow \downarrow} \right|$ SOC in first diagonalization diagonal orbital field \hat{H} $_{\rm so}$ $= \xi \vec{\sigma} \cdot \vec{l} = \xi \bigg|_{\hat{l}}$ \hat{l}_z *l*_x−*i* \hat{l}_y $\hat{l}_x + i \hat{l}_y - -\hat{l}_z$ \hat{H} _{orb}= \sum *mm'* \mid *m* \rangle $V_{mm'}^{\uparrow}$ \langle *m* $'\mid$ 0 $\left| m \right\rangle V^{\downarrow}_{\textit{mm'}} \langle m^{\, \prime} \left| \right\rangle \; ,$ 0 $\mu_B \left(B_{cx} - i B_{cy} \right)$

 $\hat{H}_c = \mu_B \vec{\sigma} \cdot \vec{B}_c = \mu_B$

 $\mu_B \left(B_{cx} + i B_{cy} \right)$ 0

constraining field

c

NCM Hamiltonian

- size of the Hamiltonian/overlap matrix is doubled comparing to Wien2k
- computational cost increases !!!

WienNCM – spin spirals

- transverse spin wave R $\alpha = \vec{R} \cdot \vec{q}$ m $\vec{n}^{\prime\prime}{=}\vec{m}\bigl[\cos{(\vec{q}\!\cdot\!\vec{R})}$ $\vec{R}^n)$, sin $(\vec{q}\!\cdot\!\vec{R})$ $\mathcal{R}^{n})$ sin (θ) , cos $(\theta)\big)$
- spin-spiral is defined by a vector **q** given in reciprocal space and,
- an angle Θ between magnetic moment and rotation axis
- rotation axis is arbitrary (no SOC), hard-coded as Z

Translational symmetry is lost !!!

WienNCM – spin spirals

- generalized Bloch theorem
	- generalized translations are symmetry operation of the H

 $T_n = \left| -\vec{q} \cdot \vec{R}_n \right| \in \left| \vec{R}_n \right|$ $T_n^{\dagger}H(\vec{r})T_n = U^{\dagger}(-\vec{q}\cdot\vec{R}_n)H(\vec{r}+\vec{R}_n)U(-\vec{q}\cdot\vec{R}_n)$

efficient way for calculation of spin waves, only one unit cell is necessary for even incommensurate wave

Usage

- generate atomic and magnetic structure
	- 1) create atomic structure
	- 2) create magnetic structure

need to specify only directions of magnetic atoms use utility programs: **ncmsymmetry**, **polarangles**, ...

- run **initncm** (initialization script)
- **xncm** (WienNCM version of **x** script)
- **runncm** (WienNCM version of **run** script)
- find more in manual

WienNCM – case.inncm file

 \bullet case.inncm – magnetic structure file

how to run it ?

● similar to WIEN2k (*initncm*, *runncm*, *xncm* ...)

runncm_lapw -p -cc 0.0001 ...

- *xncm lapw0*
- *xncm lapw1*
- *xncm lapw2*
- *xncm lcore*
- *xncm mixer*

Magnetic structure of Mn 3 Sn

γ Fe, spin spiral

Spin density maps for $q = 0.6$ (0- Γ , 1-X)