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Outline of the talk

◮ Introduction

◮ Semilocal functionals:

◮ GGA
◮ MGGA

◮ Methods for van der Waals systems:

◮ DFT-D3
◮ Nonlocal functionals

◮ Potentials for band gaps:

◮ Modified Becke-Johnson
◮ GLLB-SC

◮ On-site methods for strongly correlated d and f electrons:

◮ DFT+U
◮ On-site hybrid functionals

◮ Hybrid functionals
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Total energy in Kohn-Sham DFT1

Etot =
1

2

∑

i

∫

|∇ψi(r)|
2 d3r

︸ ︷︷ ︸

Ts

+
1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′|
d3rd3r′

︸ ︷︷ ︸

Eee

+

∫

ven(r)ρ(r)d
3r

︸ ︷︷ ︸

Een

+
1

2

∑

A,B
A6=B

ZAZB

|RA − RB |

︸ ︷︷ ︸

Enn

+Exc

◮ Ts : kinetic energy of the non-interacting electrons

◮ Eee : repulsive electron-electron electrostatic Coulomb energy

◮ Een : attractive electron-nucleus electrostatic Coulomb energy

◮ Enn : repulsive nucleus-nucleus electrostatic Coulomb energy

◮ Exc = Ex + Ec : exchange-correlation energy

Approximations for Exc have to be used in practice

=⇒ The reliability of the results depends mainly on Exc

1
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)
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Approximations for Exc (Jacob’s ladder1)

Exc =

∫

ǫxc (r) d
3r

When climbing up Jacob’s ladder, the functionals are more and more

◮ sophisticated

◮ accurate (in principle)

◮ difficult to implement

◮ expensive to evaluate (time and memory)
1

J. P. Perdew et al., J. Chem. Phys. 123, 062201 (2005)
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Kohn-Sham Schrödinger equations

Minimization of Etot leads to

(

−
1

2
∇2 + vee(r) + ven(r) + v̂xc(r)

)

ψi(r) = ǫiψi(r)

Two types of exchange-correlation potentials v̂xc:

◮ Multiplicative (rungs 1 and 2): v̂xc = δExc/δρ = vxc (KS1):

◮ LDA
◮ GGA

◮ Non-multiplicative (rungs 3 and 4): v̂xc = (1/ψi)δExc/δψ
∗
i = vxc,i

(generalized KS2):

◮ Hartree-Fock
◮ LDA+U
◮ Hybrid (mixing of GGA and Hartree-Fock)
◮ MGGA
◮ Self-interaction corrected (Perdew-Zunger)

1
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

2
A. Seidl et al., Phys. Rev. B 53, 3764 (1996)
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Semilocal functionals: GGA

ǫGGA
xc (ρ,∇ρ) = ǫLDA

x (ρ)Fxc(rs, s)

where Fxc is the enhancement factor and

rs =
1

(
4
3πρ

)1/3
(Wigner-Seitz radius)

s =
|∇ρ|

2 (3π2)1/3 ρ4/3
(inhomogeneity parameter)

∼ 200 GGAs exist. They can be classified into two classes:

◮ Semi-empirical: contain parameters fitted to accurate (i.e.,

experimental) data.

◮ Ab initio: All parameters were determined by using

mathematical conditions obeyed by the exact functional.
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Semilocal functionals: trends with GGA

Exchange enhancement factor Fx(s) = ǫGGA
x /ǫLDA

x
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Construction of an universal GGA: A failure
Test of functionals on 44 solids1

0 0.5 1 1.5 2
0

2

4

6

8

PBE              

WC               

PBEsol           

PBEint           

PBEalpha         

RGE2             

SG4              

Mean absolute percentage error for lattice constant

M
ea

n 
ab

so
lu

te
 p

er
ce

nt
ag

e 
er

ro
r 

fo
r 

co
he

si
ve

 e
ne

rg
y

•  The accurate GGA for solids (cohesive energy/lattice constant).
   They are ALL very inaccurate for the atomization of molecules

1
F. Tran et al., J. Chem. Phys. 144, 204120 (2016)
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Semilocal functionals: meta-GGA

ǫMGGA
xc (ρ,∇ρ, t) = ǫLDA

x (ρ)Fxc(rs, s, α)

◮ α = t−tW
tTF

◮ α = 1 (region of constant electron density)
◮ α = 0 (in one- and two-electron regions very close and very far

from nuclei)
◮ α≫ 1 (region between closed shell atoms)

=⇒ MGGA functionals are more flexible

Example: SCAN1 is

◮ as good as the best GGA for atomization energies of molecules

◮ as good as the best GGA for lattice constant of solids

1
J. Sun et al., Phys. Rev. Lett. 115, 036402 (2015)
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Semilocal functionals: meta-GGA

Fx(s, α) = ǫMGGA

x /ǫLDA

x
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Semilocal functionals: MGGA MS2 and SCAN
Test of functionals on 44 solids1
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•  The accurate GGA for solids (cohesive energy/lattice constant).
   They are ALL very inaccurate for the atomization of molecules

•  MGGA_MS2 and SCAN are very accurate for the atomization of molecules

1
F. Tran et al., J. Chem. Phys. 144, 204120 (2016)
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Input file case.in0: keywords for the xc-functional

The functional is specified at the 1st line of case.in0. Three different

ways:

1. Specify a global keyword for Ex, Ec, vx, vc:
◮ TOT XC NAME

2. Specify a keyword for Ex, Ec, vx, vc individually:

◮ TOT EX NAME1 EC NAME2 VX NAME3 VC NAME4

3. Specify keywords to use functionals from Libxc1:

◮ TOT XC TYPE X NAME1 XC TYPE C NAME2

◮ TOT XC TYPE XC NAME

where TYPE is the family name: LDA, GGA or MGGA

1
M. A. L. Marques et al., Comput. Phys. Commun. 183, 2272 (2012); S. Lehtola et al., SoftwareX 7, 1 (2018)

http://www.tddft.org/programs/octopus/wiki/index.php/Libxc
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Input file case.in0: examples

◮ PBE:

TOT XC PBE

or

TOT EX PBE EC PBE VX PBE VC PBE

or (Libxc keyword)

TOT XC GGA X PBE XC GGA C PBE

◮ mBJ (with LDA for the xc-energy):

TOT XC MBJ

◮ MGGA MS2:

TOT XC MGGA MS 0.504 0.14601 4.0
︸ ︷︷ ︸

κ,c,b

All available functionals are listed in tables of the user’s guide and in

$WIENROOT/SRC lapw0/xc funcs.h for Libxc (if installed)
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Methods for van der Waals systems

Problem with semilocal and hybrid functionals:

◮ They do not include London dispersion interactions =⇒ Results

are very often qualitatively wrong for van der Waals systems

Two types of dispersion terms added to the DFT total energy:

◮ Pairwise term (cheap)1:

EPW
c,disp = −

∑

A<B

∑

n=6,8,10,...

fdamp
n (RAB)

CABn
RnAB

◮ Nonlocal term (more expensive than semilocal)2:

ENL
c,disp =

1

2

∫ ∫

ρ(r1)Φ(r1, r2)ρ(r2)d
3r1d

3r2

1
S. Grimme, J. Comput. Chem. 25, 1463 (2004)

2
M. Dion et al., Phys. Rev. Lett. 92, 246401 (2004)
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DFT-D3 pairwise method1

◮ Features:

◮ Cheap
◮ CAB

n depend on positions of the nuclei (via coordination number)
◮ Energy and forces (minimization of internal parameters)
◮ 3-body term available (more important for solids than molecules)

◮ Installation:

◮ Not included in WIEN2k
◮ Download and compile the DFTD3 package from

https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/

copy the dftd3 executable in $WIENROOT

◮ Usage:

◮ Input file case.indftd3 (if not present a default one is copied automatically

by x lapw)
◮ run(sp) lapw -dftd3 . . .
◮ case.scfdftd3 is included in case.scf

1
S. Grimme et al., J. Chem. Phys. 132, 154104 (2010)
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DFT-D3 method: input file case.indftd3

Default (and recommended) input file:

method bj damping function fdamp
n

func default the one in case.in0∗

grad yes forces

pbc yes periodic boundary conditions

abc yes 3-body term

cutoff 95 interaction cutoff

cnthr 40 coordination number cutoff

num no numerical gradient

∗default will work for PBE, PBEsol, BLYP and TPSS. For other functionals,

the functional name has to be specified (see dftd3.f of DFTD3 package)
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van der Waals interactions: hexagonal boron nitride

The GGA BLYP and PBE lead to too large interlayer distance and (nearly) no interlayer bonding

Adding the atom-pairwise correction D31 leads to good agreement with experiment
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1
S. Grimme et al., J. Chem. Phys. 132, 154104 (2010)
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Nonlocal vdW functionals

ENL
c,disp =

1

2

∫ ∫

ρ(r1)Φ(r1, r2)ρ(r2)d
3r1d

3r2

Kernels Φ proposed in the literature:

◮ DRSLL1 (vdW-DF1, optB88-vdW, vdW-DF-cx0, . . . ):

◮ Derived from ACFDT
◮ Contains no adjustable parameter

◮ LMKLL2 (vdW-DF2, rev-vdW-DF2):

◮ Zab in DRSLL multiplied by 2.222

◮ rVV103,4:

◮ Different analytical form as DRSLL
◮ Parameters: b = 6.3 and C = 0.0093

◮ rVV10L5:

◮ Parameters: b = 10.0 and C = 0.0093
◮ DADE5 (not tested on solids):
1

M. Dion et al., Phys. Rev. Lett. 92, 246401 (2004)
2

K. Lee et al., Phys. Rev. B 82, 081101(R) (2010)
3

O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 133, 244103 (2010)
4

R. Sabatini et al., Phys. Rev. B 87, 041108(R) (2013)
5

H. Peng and J. P. Perdew, Phys. Rev. B 95, 081105(R) (2017)
6

M. Shahbaz and K. Szalewicz, Phys. Rev. Lett 122, 213001 (2019)
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Nonlocal vdW functionals in WIEN2k1

◮ Features:

◮ Use the fast FFT-based method of Román-Pérez and Soler2:

1. ρ is smoothed close to the nuclei (density cutoff ρc) → ρs. The

smaller ρc is, the smoother ρs is.

2. ρs is expanded in plane waves in the whole unit cell.

Gmax is the plane-wave cutoff of the expansion.

◮ Many of the vdW functionals from the literature are available (see

user’s guide)

◮ Usage:

◮ Input file case.innlvdw ($WIENROOT/SRC templates)
◮ run(sp) lapw -nlvdw . . .
◮ case.scfnlvdw is included in case.scf

1
F. Tran et al., Phys. Rev. B 96, 054103 (2017)

2
G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009)
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Nonlocal vdW functionals: the input file case.innlvdw

1 kernel type

-0.8491 parameters of the kernel

20 plane-wave expansion cutoff GMAX

0.3 density cutoff rhoc

T calculation of the potential (T or F)

line 1 : “1” for DRSLL and LMKLL or “2” for rVV10(L)

line 2 : “-0.8491” for DRSLL, “-1.887” for LMKLL or “6.3 0.0093” for rVV10

line 3 : Use Gmax = 25 or 30 in case of numerical noise

line 4 : Eventually repeat with larger ρc (e.g, 0.6)

line 5 : Potential is necessary only for forces. Save computational time if set to “F”
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van der Waals interactions: tests on solids1

44 strongly bound solids 17 weakly bound solids

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

14

16

18

(a)

MARE for lattice constant (%)

M
A

R
E

fo
r

b
in

d
in

g
en

er
g
y

(%
)

 

 

LDA
PBE
PBEsol
SCAN
TM
vdW−DF
vdW−DF2
C09−vdW
optB88−vdW
optB86b−vdW
rev−vdW−DF2
vdW−DF−cx
rVV10
PBE+rVV10L
SCAN+rVV10
PBEsol+rVV10s
PBE−D3(BJ)
revPBE−D3(BJ)

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

PBE → (15,81)
(b)

MARE for lattice constant (%)

M
A

R
E

fo
r

b
in

d
in

g
en

er
g
y

(%
)

Conclusion: rev-vdW-DF22 is the best functional for solids

1
F. Tran et al., Phys. Rev. Materials 3, 063602 (2019)

2
I. Hamada, Phys. Rev. B. 89, 121103(R) (2014)
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Accurate band gaps with DFT: the modified Becke-Johnson potential

◮ Standard LDA and GGA functionals underestimate the band gap

◮ Hybrid and GW are much more accurate, but also much more

expensive

◮ A cheap alternative is to use the modified Becke-Johnson (mBJ)

potential:1

vmBJ

x (r) = cvBR

x (r) + (3c− 2)
1

π

√

5

6

√

t(r)

ρ(r)

where vBR
x is the Becke-Roussel potential, t is the kinetic-energy

density and c is given by

c = α+ β




1

Vcell

∫

cell

|∇ρ(r)|

ρ(r)
d3r





1/2

mBJ is a MGGA potential

1
F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)
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F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)
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Band gaps with mBJ: Reach the GW accuracy
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See also F. Tran and P. Blaha, J. Phys. Chem. A 121, 3318 (2017) (76 solids)

P. Borlido et al., J. Chem. Theory Comput. xx, xxxx (2019) (472 solids)
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How to run a calculation with the mBJ potential?

1. init lapw (choose LDA or PBE)

2. init mbj lapw (create/modify files)

2.1 automatically done: case.in0 modified and case.inm vresp created

2.2 run(sp) lapw -i 1 -NI (creates case.r2v and case.vrespsum)

2.3 save lapw

3. init mbj lapw and choose one of the parametrizations:

0: Original mBJ values1

1: New parametrization2

2: New parametrization for semiconductors2

3: Original BJ potential3

4. run(sp) lapw ...

1
F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

2
D. Koller et al., Phys. Rev. B 85, 155109 (2012)

3
A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006)
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GLLB-SC potential for band gaps

◮ GLLB-SC is a potential (no energy functional)1:

vGLLB-SC
xc,σ = 2εPBEsol

x,σ +KLDA
x

Nσ
∑

i=1

√
ǫH − ǫiσ

|ψiσ |2

ρσ
+ vPBEsol

c,σ

◮ Leads to an derivative discontinuity:

∆ =

∫

ψ∗
L





NσL
∑

i=1

KLDA
x

(√

ǫL − ǫiσL
−

√

ǫH − ǫiσL

)

∣

∣ψiσL

∣

∣

2

ρσL



ψLd
3r

Comparison with experiment: Eg = EKS
g +∆

◮ Much better than LDA/GGA for band gaps

◮ Not as good as mBJ for strongly correlated systems2

◮ Seems interesting for electric field gradient2

◮ See user’s guide for usage

1
M. Kuisma et al., Phys. Rev. B 82, 115106 (2010)

1
F. Tran, S. Ehsan, and P. Blaha, Phys. Rev. Materials 2, 023802 (2018)
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Strongly correlated electrons

Problem with semilocal functionals:

◮ They give qualitatively wrong results for solids which contain

localized 3d or 4f electrons

◮ The band gap is too small (zero in FeO!)
◮ The magnetic moment is too small (zero in YBa2Cu3O6!)
◮ Wrong electronic configuration

Why?

◮ The strong on-site correlations are not correctly accounted for by

semilocal functionals.

(Partial) solution to the problem:

◮ Combine semilocal functionals with Hartree-Fock theory:

◮ DFT+U
◮ Hybrid

Even better:

◮ LDA+DMFT (DMFT codes using WIEN2k orbitals as input

exist)

26 / 40
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On-site DFT+U and hybrid methods in WIEN2k

◮ For solids, the hybrid functionals are computationally very

expensive.

◮ In WIEN2k the on-site DFT+U 1 and on-site hybrid2,3 methods

are available. These methods are approximations of the

Hartree-Fock/hybrid methods

◮ Applied only inside atomic spheres of selected atoms and

electrons of a given angular momentum ℓ.

On-site methods → As cheap as LDA/GGA.

1
V. I. Anisimov et al., Phys. Rev. B 44, 943 (1991)

2
P. Novák et al., Phys. Stat. Sol. (b) 243, 563 (2006)

3
F. Tran et al., Phys. Rev. B 74, 155108 (2006)
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DFT+U and hybrid exchange-correlation functionals

The exchange-correlation functional is

EDFT+U/hybrid
xc = EDFT

xc [ρ] + Eonsite[nmm′ ]

where nmm′ is the density matrix of the correlated electrons

◮ For DFT+U both exchange and Coulomb are corrected:

Eonsite = EHF
x + ECoul

︸ ︷︷ ︸

correction

−EDFT
x − EDFT

Coul
︸ ︷︷ ︸

double counting

There are several versions of the double-counting term

◮ For the hybrid methods only exchange is corrected:

Eonsite = αEHF
x

︸ ︷︷ ︸

corr.

−αELDA
x

︸ ︷︷ ︸

d. count.

where α is a parameter ∈ [0, 1]
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How to run DFT+U and on-site hybrid calculations?

1. Create the input files:

◮ case.inorb and case.indm for DFT+U
◮ case.ineece for on-site hybrid functionals (case.indm created

automatically):

2. Run the job (can only be run with runsp lapw):

◮ LDA+U : runsp lapw -orb . . .
◮ Hybrid: runsp lapw -eece . . .

For a calculation without spin-polarization (ρ↑ = ρ↓):

runsp c lapw -orb/eece . . .
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Input file case.inorb

LDA+U applied to the 4f electrons of atoms No. 2 and 4:

1 2 0 nmod, natorb, ipr

PRATT,1.0 mixmod, amix

2 1 3 iatom, nlorb, lorb

4 1 3 iatom, nlorb, lorb

1 nsic (LDA+U(SIC) used)

0.61 0.07 U J (Ry)

0.61 0.07 U J (Ry)

nsic=0 for the AMF method (less strongly correlated electrons)

nsic=1 for the SIC method

nsic=2 for the HMF method

Review article : E. R. Ylvisaker et al., Phys. Rev. B 79, 035103 (2009)
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Input file case.ineece

On-site hybrid functional PBE0 applied to the 4f electrons of atoms

No. 2 and 4:

-12.0 2 emin, natorb

2 1 3 iatom, nlorb, lorb

4 1 3 iatom, nlorb, lorb

HYBR HYBR/EECE

0.25 fraction of exact exchange
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SCF cycle of DFT+U in WIEN2k

lapw0 → vDFT
xc,σ + vee + ven (case.vspup(dn), case.vnsup(dn))

orb -up → v↑
mm′ (case.vorbup)

orb -dn → v↓
mm′ (case.vorbdn)

lapw1 -up -orb → ψ↑
nk
, ǫ↑nk

(case.vectorup, case.energyup)

lapw1 -dn -orb → ψ↓
nk
, ǫ↓nk

(case.vectordn, case.energydn)

lapw2 -up -orb → ρ↑
val

(case.clmvalup), n↑
mm′ (case.dmatup)

lapw2 -dn -orb → ρ↓
val

(case.clmvaldn), n↓
mm′ (case.dmatdn)

lcore -up → ρ↑core (case.clmcorup)

lcore -dn → ρ↓core (case.clmcordn)

mixer → mixed ρσ and nσ
mm′
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Hybrid functionals

◮ On-site hybrid functionals can be applied only to localized electrons

◮ Full hybrid functionals are necessary (but expensive) for solids with

delocalized electrons (e.g., in sp-semiconductors)

Two types of full hybrid functionals available in WIEN2k1:

◮ unscreened:

Exc = EDFT

xc + α
(

EHF

x − EDFT

x

)

◮ screened (short-range), 1

|r−r′|
→ e

−λ|r−r′|
|r−r′|

:

Exc = EDFT

xc + α
(

ESR−HF

x − ESR−DFT

x

)

screening leads to faster convergence with k-points sampling

1
F. Tran and P. Blaha, Phys. Rev. B 83, 235118 (2011)
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Hybrid functionals: technical details

◮ 10-1000 times more expensive than LDA/GGA

◮ k-point and MPI parallelization

◮ Approximations to speed up the calculations:

◮ Reduced k-mesh for the HF potential. Example:

For a calculation with a 12× 12× 12 k-mesh, the reduced k-mesh for

the HF potential can be:

6× 6× 6, 4× 4× 4, 3× 3× 3, 2× 2× 2 or 1× 1× 1
◮ Non-self-consistent calculation of the band structure

◮ Underlying functionals for unscreened and screened hybrid:

◮ LDA, PBE, WC, PBEsol, B3PW91, B3LYP

◮ Use run bandplothf lapw for band structure

◮ Can be combined with spin-orbit coupling
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Hybrid functionals: input file case.inhf

Example for YS-PBE0 (similar to HSE06 from Heyd, Scuseria and Ernzerhof1)

0.25 fraction α of HF exchange

T screened (T, YS-PBE0) or unscreened (F, PBE0)

0.165 screening parameter λ
20 number of bands for the 2nd Hamiltonian

6 GMAX

3 lmax for the expansion of orbitals

3 lmax for the product of two orbitals

1d-3 radial integrals below this value neglected

Important: The computational time will depend strongly on the

number of bands, GMAX, lmax and the number of k-points

1
A. V. Krukau et al., J. Chem. Phys. 125, 224106 (2006)
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How to run hybrid functionals?

1. init lapw

2. Recommended: run(sp) lapw for the semilocal functional

3. save lapw

4. init hf lapw (this will create/modify input files)

4.1 adjust case.inhf according to your needs

4.2 reduced k-mesh for the HF potential? Yes or no

4.3 specify the k-mesh

5. run(sp) lapw -hf (-redklist) (-diaghf) ...
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SCF cycle of hybrid functionals in WIEN2k

lapw0 -grr → vDFT
x (case.r2v), αEDFT

x (:AEXSL)

lapw0 → vDFT
xc + vee + ven (case.vsp, case.vns)

lapw1 → ψDFT
nk , ǫDFT

nk (case.vector, case.energy)

lapw2 →
∑

nk ǫ
DFT
nk (:SLSUM)

hf → ψnk, ǫnk (case.vectorhf, case.energyhf)

lapw2 -hf → ρval (case.clmval)

lcore → ρcore (case.clmcor)

mixer → mixed ρ
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Nonmagnetic and ferromagnetic phases of cerium1

Small U (1.5 eV) or αx (0.08) leads to correct stability ordering
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Nonmagnetic and ferromagnetic phases of cerium1

NM: small sensitivity on U/αx
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Some recommendations

Before using a functional:

◮ read a few papers about the functional in order to know

◮ for which properties or types of solids it is supposed to be reliable
◮ if it is adapted to your problem

◮ figure out if you have enough computational ressources

◮ hybrid functionals and GW require (substantially) more

computational ressources (and patience)
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