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case in which one wants to construct a set of WFs that spans a
subspace containing, e.g., the partially occupied bands of
a metal.

These developments touched off a transformational shift in
which the computational electronic-structure community
started constructing maximally localized WFs (MLWFs) ex-
plicitly and using these for different purposes. The reasons
are manifold: WFs, akin to LMOs in molecules, provide an
insightful chemical analysis of the nature of bonding, and its
evolution during, say, a chemical reaction. As such, they
have become an established tool in the postprocessing of
electronic-structure calculations. More interestingly, there
are formal connections between the centers of charge of the
WFs and the Berry phases of the Bloch functions as they are
carried around the Brillouin zone. This connection is
embodied in the microscopic modern theory of polarization,
alluded to above, and has led to important advances in the
characterization and understanding of dielectric response and
polarization in materials. Of broader interest to the entire
condensed-matter community is the use of WFs in the con-
struction of model Hamiltonians for, e.g., correlated-electron
and magnetic systems. An alternative use of WFs as local-
ized, transferable building blocks has taken place in the
theory of ballistic (Landauer) transport, where Green’s func-
tions and self-energies can be constructed effectively in a
Wannier basis, or that of first-principles tight-binding (TB)
Hamiltonians, where chemically accurate Hamiltonians are
constructed directly on the Wannier basis, rather than fitted
or inferred from macroscopic considerations. Finally, the
ideas that were developed for electronic WFs have also
seen application in very different contexts. For example,
MLWFs have been used in the theoretical analysis of pho-
nons, photonic crystals, cold-atom lattices, and the local
dielectric responses of insulators.

Here we review these developments. We first introduce the
transformation from Bloch functions to WFs in Sec. II, dis-
cussing their gauge freedom and the methods developed for
constructing WFs through projection or maximal localiza-
tion. A ‘‘disentangling procedure’’ for constructing WFs for a
nonisolated set of bands (e.g., in metals) is also described. In
Sec. III we discuss variants of these procedures in which
different localization criteria or different algorithms are used,
and discuss the relationship to ‘‘downfolding’’ and linear-
scaling methods. Section IV describes how the calculation of
WFs has proved to be a useful tool for analyzing the nature of
the chemical bonding in crystalline, amorphous, and defec-
tive systems. Of particular importance is the ability to use
WFs as a local probe of electric polarization, as described in
Sec. V. There we also discuss how the Wannier representation
has been useful in describing orbital magnetization, NMR
chemical shifts, orbital magnetoelectric responses, and
topological insulators (TIs). Section VI describes Wannier
interpolation schemes, by which quantities computed on a
relatively coarse k-space mesh can be used to interpolate
faithfully onto an arbitrarily fine k-space mesh at relatively
low cost. In Sec. VII we discuss applications in which the
WFs are used as an efficient basis for the calculations of
quantum-transport properties, the derivation of semiempirical
potentials, and for describing strongly correlated systems.
Section VIII contains a brief discussion of the construction

and use of WFs in contexts other than electronic-structure
theory, including for phonons in ordinary crystals, photonic
crystals, and cold atoms in optical lattices. Finally, Sec. IX
provides a short summary and conclusions.

II. REVIEW OF BASIC THEORY

A. Bloch functions and Wannier functions

Electronic-structure calculations are often carried out
using periodic boundary conditions. This is the most natural
choice for the study of perfect crystals, and also applies to the
common use of periodic supercells for the study of non-
periodic systems such as liquids, interfaces, and defects.
The one-particle effective Hamiltonian H then commutes
with the lattice-translation operator TR, allowing one to
choose as common eigenstates the Bloch orbitals jc nki:

½H; TR" ¼ 0 ) c nkðrÞ ¼ unkðrÞeik!r; (1)

where unkðrÞ has the periodicity of the Hamiltonian.
Several Bloch functions are sketched on the left-hand side

of Fig. 1 for a toy model in which the band of interest is
composed of p-like orbitals centered on each atom. We
suppose that this band is an isolated band, i.e., it remains
separated by a gap from the bands below and above at all k.
Since Bloch functions at different k have different envelope
functions eik&r, one can expect to be able to build a localized
‘‘wave packet’’ by superposing Bloch functions of different
k. To get a localized wave packet in real space, we need to
use a very broad superposition in k space. But k lives in the
periodic Brillouin zone, so the best we can do is to choose
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FIG. 1 (color online). Transformation from Bloch functions to
Wannier functions (WFs). Left: Real-space representation of three
of the Bloch functions eikxukðxÞ associated with a single band in 1D,
for three different values of the wave vector k. Filled circles indicate
lattice vectors, and thin lines indicate the eikx envelopes of each
Bloch function. Right: WFs associated with the same band, forming
periodic images of one another. The two sets of Bloch functions at
every k in the Brillouin zone and WFs at every lattice vector span
the same Hilbert space.

Marzari et al.: Maximally localized Wannier functions: Theory . . . 1421

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012

equal amplitudes all across the Brillouin zone. Thus, we can
construct

w0ðrÞ ¼
V

ð2!Þ3
Z
BZ

dkc nkðrÞ; (2)

where V is the real-space primitive cell volume and the
integral is carried over the BZ. (See Sec. II.A.3 for normal-
ization conventions.) Equation (2) can be interpreted as the
WF located in the home unit cell, as sketched in the top-right
panel of Fig. 1.

More generally, we can insert a phase factor e$ ik%R into the
integrand of Eq. (2), where R is a real-space lattice vector;
this has the effect of translating the real-space WF by R,
generating additional WFs such as w1 and w2 sketched in
Fig. 1. Switching to the Dirac bra-ket notation and introduc-
ing the notation that Rn refers to the WF wnR in cell R
associated with band n, WFs can be constructed according to
(Wannier, 1937)

jRni ¼ V

ð2!Þ3
Z
BZ

dke$ ik%Rjc nki: (3)

It is easily shown that the jRni form an orthonormal set (see
Sec. II.A.3) and that two WFs jRni and jR0ni transform into
each other under translation by the lattice vector R $ R0

(Blount, 1962). Equation (3) takes the form of a Fourier
transform, and its inverse transform is

jc nki ¼
X

R

eik%RjRni (4)

(see Sec. II.A.3). Any of the Bloch functions on the left side
of Fig. 1 can thus be built up by linearly superposing the
WFs shown on the right side, when the appropriate phases
eik%R are used.

The transformations of Eqs. (3) and (4) constitute a unitary
transformation between Bloch and Wannier states. Thus, both
sets of states provide an equally valid description of the band
subspace, even if the WFs are not Hamiltonian eigenstates.
For example, the charge density obtained by summing the
squares of the Bloch functions jc nki or the WFs jRni is
identical; a similar reasoning applies to the trace of any
one-particle operator. The equivalence between the Bloch
and Wannier representations can also be made manifest by
expressing the band projection operator P in both represen-
tations, i.e., as

P ¼ V

ð2!Þ3
Z
BZ

dkjc nkihc nkj ¼
X

R

jRnihRnj: (5)

WFs thus provide an attractive option for representing the
space spanned by a Bloch band in a crystal, being localized
while still carrying the same information contained in the
Bloch functions.

1. Gauge freedom

The theory of WFs is made more complex by the presence
of a ‘‘gauge freedom’’ that exists in the definition of the c nk.
In fact, we can replace

j~c nki ¼ ei’n ðkÞjc nki; (6)

or, equivalently,

j~unki ¼ ei’n ðkÞjunki; (7)

without changing the physical description of the system, with
’nðkÞ being any real function that is periodic in reciprocal
space.1 A smooth gauge could, e.g., be defined such that
rkjunki is well defined at all k. Henceforth we assume that
the Bloch functions on the right-hand side of Eq. (3) belong to
a smooth gauge, since we would not get well-localized WFs
on the left-hand side otherwise. This is typical of Fourier
transforms: the smoother the reciprocal-space object, the
more localized the resulting real-space object, and vice versa.

One way to see this explicitly is to consider the R ¼ 0
home cell wn0ðrÞ evaluated at a distant point r; using Eq. (1)
in Eq. (3), this is given by

R
BZ unkðrÞeik%rdk, which will be

small due to cancellations arising from the rapid variation of
the exponential factor, provided that unk is a smooth function
of k (Blount, 1962).

It is important to realize that the gauge freedom of
Eqs. (6) and (7) propagates into the WFs. That is, different
choices of smooth gauge correspond to different sets of WFs
having in general different shapes and spreads. In this sense,
the WFs are ‘‘more nonunique’’ than the Bloch functions,
which acquire only a phase change. We also emphasize that
there is no ‘‘preferred gauge’’ assigned by the Schrödinger
equation to the Bloch orbitals. Thus, the nonuniqueness of the
WFs resulting from Eq. (3) is unavoidable.

2. Multiband case

Before discussing how this nonuniqueness might be re-
solved, we first relax the condition that band n be a single
isolated band, and consider instead a manifold of J bands that
remain separated with respect to any lower or higher bands
outside the manifold. Internal degeneracies and crossings
among the J bands may occur in general. In the simplest
case this manifold corresponds to the occupied bands of an
insulator, but more generally it consists of any set of bands that
is separated by a gap from both lower and higher bands
everywhere in the Brillouin zone. Traces over this band mani-
fold are invariant with respect to any unitary transformation
among the J Bloch orbitals at a given wave vector, so it is
natural to generalize the notion of a ‘‘gauge transformation’’ to

j~c nki ¼
XJ

m¼ 1

UðkÞ
mn jc mki: (8)

Here UðkÞ
mn is a unitary matrix of dimension J that is periodic in

k, with Eq. (6) corresponding to the special case of a diagonal
U matrix. It follows that the projection operator onto this band
manifold at wave vector k

Pk ¼
XJ

n¼ 1

jc nkihc nkj ¼
XJ

n¼ 1

j~c nkih~c nkj (9)

1More precisely, the condition is that ’n ðkþ GÞ¼ ’n ðkÞþ G%!R
for any reciprocal-lattice translation G, where !R is a real-space
lattice vector. This allows for the possibility that ’n may shift by 2!
times an integer upon translation by G; the vector !R expresses the
corresponding shift in the position of the resulting WF.
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case in which one wants to construct a set of WFs that spans a
subspace containing, e.g., the partially occupied bands of
a metal.

These developments touched off a transformational shift in
which the computational electronic-structure community
started constructing maximally localized WFs (MLWFs) ex-
plicitly and using these for different purposes. The reasons
are manifold: WFs, akin to LMOs in molecules, provide an
insightful chemical analysis of the nature of bonding, and its
evolution during, say, a chemical reaction. As such, they
have become an established tool in the postprocessing of
electronic-structure calculations. More interestingly, there
are formal connections between the centers of charge of the
WFs and the Berry phases of the Bloch functions as they are
carried around the Brillouin zone. This connection is
embodied in the microscopic modern theory of polarization,
alluded to above, and has led to important advances in the
characterization and understanding of dielectric response and
polarization in materials. Of broader interest to the entire
condensed-matter community is the use of WFs in the con-
struction of model Hamiltonians for, e.g., correlated-electron
and magnetic systems. An alternative use of WFs as local-
ized, transferable building blocks has taken place in the
theory of ballistic (Landauer) transport, where Green’s func-
tions and self-energies can be constructed effectively in a
Wannier basis, or that of first-principles tight-binding (TB)
Hamiltonians, where chemically accurate Hamiltonians are
constructed directly on the Wannier basis, rather than fitted
or inferred from macroscopic considerations. Finally, the
ideas that were developed for electronic WFs have also
seen application in very different contexts. For example,
MLWFs have been used in the theoretical analysis of pho-
nons, photonic crystals, cold-atom lattices, and the local
dielectric responses of insulators.

Here we review these developments. We first introduce the
transformation from Bloch functions to WFs in Sec. II, dis-
cussing their gauge freedom and the methods developed for
constructing WFs through projection or maximal localiza-
tion. A ‘‘disentangling procedure’’ for constructing WFs for a
nonisolated set of bands (e.g., in metals) is also described. In
Sec. III we discuss variants of these procedures in which
different localization criteria or different algorithms are used,
and discuss the relationship to ‘‘downfolding’’ and linear-
scaling methods. Section IV describes how the calculation of
WFs has proved to be a useful tool for analyzing the nature of
the chemical bonding in crystalline, amorphous, and defec-
tive systems. Of particular importance is the ability to use
WFs as a local probe of electric polarization, as described in
Sec. V. There we also discuss how the Wannier representation
has been useful in describing orbital magnetization, NMR
chemical shifts, orbital magnetoelectric responses, and
topological insulators (TIs). Section VI describes Wannier
interpolation schemes, by which quantities computed on a
relatively coarse k-space mesh can be used to interpolate
faithfully onto an arbitrarily fine k-space mesh at relatively
low cost. In Sec. VII we discuss applications in which the
WFs are used as an efficient basis for the calculations of
quantum-transport properties, the derivation of semiempirical
potentials, and for describing strongly correlated systems.
Section VIII contains a brief discussion of the construction

and use of WFs in contexts other than electronic-structure
theory, including for phonons in ordinary crystals, photonic
crystals, and cold atoms in optical lattices. Finally, Sec. IX
provides a short summary and conclusions.

II. REVIEW OF BASIC THEORY

A. Bloch functions and Wannier functions

Electronic-structure calculations are often carried out
using periodic boundary conditions. This is the most natural
choice for the study of perfect crystals, and also applies to the
common use of periodic supercells for the study of non-
periodic systems such as liquids, interfaces, and defects.
The one-particle effective Hamiltonian H then commutes
with the lattice-translation operator TR, allowing one to
choose as common eigenstates the Bloch orbitals jc nki:

½H; TR" ¼ 0 ) c nkðrÞ ¼ unkðrÞeik!r; (1)

where unkðrÞ has the periodicity of the Hamiltonian.
Several Bloch functions are sketched on the left-hand side

of Fig. 1 for a toy model in which the band of interest is
composed of p-like orbitals centered on each atom. We
suppose that this band is an isolated band, i.e., it remains
separated by a gap from the bands below and above at all k.
Since Bloch functions at different k have different envelope
functions eik&r, one can expect to be able to build a localized
‘‘wave packet’’ by superposing Bloch functions of different
k. To get a localized wave packet in real space, we need to
use a very broad superposition in k space. But k lives in the
periodic Brillouin zone, so the best we can do is to choose
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FIG. 1 (color online). Transformation from Bloch functions to
Wannier functions (WFs). Left: Real-space representation of three
of the Bloch functions eikxukðxÞ associated with a single band in 1D,
for three different values of the wave vector k. Filled circles indicate
lattice vectors, and thin lines indicate the eikx envelopes of each
Bloch function. Right: WFs associated with the same band, forming
periodic images of one another. The two sets of Bloch functions at
every k in the Brillouin zone and WFs at every lattice vector span
the same Hilbert space.
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jc nki ¼
X

R

eik"RjRni

m

jRni ¼ 1

N

X

k

e# ik"Rjc nki

(12)

with hc nkjc mk0 i ¼ N!nm!kk0 , so that Eq. (5) becomes, after
generalizing to the multiband case,

P ¼ 1

N

X

nk

jc nkihc nkj ¼
X

nR

jRnihRnj: (13)

Another commonly used convention is to write

jc nki ¼
1ffiffiffiffi
N

p
X

R

eik"RjRni

m

jRni ¼ 1ffiffiffiffi
N

p
X

k

e# ik"Rjc nki;

(14)

with hc nkjc mk0 i ¼ !nm!kk0 and Eq. (13) replaced by

P ¼
X

nk

jc nkihc nkj ¼
X

nR

jRnihRnj: (15)

In either case, it is convenient to keep the junki func-
tions normalized to the unit cell, with inner products involv-
ing them, such as humkjunki, understood as integrals over
one unit cell. In the case of Eq. (14), this means that
unkðrÞ ¼

ffiffiffiffi
N

p
e# ik"rc nkðrÞ.

B. Wannier functions via projection

A simple yet often effective approach for constructing a
smooth gauge in k, and a corresponding set of well-localized
WFs, is by projection, an approach that finds its roots in the
analysis of des Cloizeaux (1964a). Here, as discussed, e.g., in
Sec. IV.G.1 of Marzari and Vanderbilt (1997), one starts from
a set of J localized trial orbitals gnðrÞ corresponding to some
rough guess for the WFs in the home unit cell. Returning to
the continuous-k formulation, these gnðrÞ are projected onto
the Bloch manifold at wave vector k to obtain

j"nki ¼
XJ

m¼1

jc mkihc mkjgni; (16)

which are typically smooth in k space, albeit not orthonor-
mal. (The integral in hc mkjgni is over all space as usual.) We
note that in actual practice such projection is achieved by first
computing a matrix of inner products ðAkÞmn ¼ hc mkjgni
and then using these in Eq. (16). The overlap matrix ðSkÞmn ¼
h"mkj"nkiV ¼ ðAy

kAkÞmn (where subscript V denotes an in-
tegral over one cell) is then computed and used to construct
the Löwdin-orthonormalized Bloch-like states

j ~c nki ¼
XJ

m¼1

j"mkiðS# 1=2
k Þmn: (17)

These j ~c nki have now a smooth gauge in k, are related to the
original jc nki by a unitary transformation,3 and when

substituted into Eq. (3) in place of the jc nki result in a set
of well-localized WFs. We note that the j ~c nki are uniquely
defined by the trial orbitals gnðrÞ and the chosen (isolated)
manifold, since any arbitrary unitary rotation among the
jc nki orbitals cancels out exactly and does not affect the
outcome of Eq. (16), thus eliminating any gauge freedom.

We emphasize that the trial functions do not need to
resemble the target WFs closely; it is often sufficient to
choose simple analytic functions (e.g., spherical harmonics
times Gaussians) provided they are roughly located on sites
where WFs are expected to be centered and have appropriate
angular character. The method is successful as long as the
inner-product matrix Ak does not become singular (or nearly
so) for any k, which can be ensured by checking that the ratio
of maximum and minimum values of det Sk in the Brillouin
zone does not become too large. For example, spherical
(s-like) Gaussians located at the bond centers will suffice
for the construction of well-localized WFs, akin to those
shown in Fig. 2, spanning the four occupied valence bands
of semiconductors such as Si and GaAs.

C. Maximally localized Wannier functions

The projection method described in Sec. II.B has been used
by many (Stephan, Martin, and Drabold, 2000; Ku et al.,
2002; Lu et al., 2004; Qian et al., 2008), as has a related
method involving downfolding of the band structure onto a
minimal basis (Andersen and Saha-Dasgupta, 2000; Zurek,
Jepsen, and Andersen, 2005); some of these approaches will
also be discussed in Sec. III.B. Others made use of symmetry
considerations, analyticity requirements, and variational pro-
cedures (Sporkmann and Bross, 1994, 1997; Smirnov and
Usvyat, 2001). Avery general and now widely used approach,
however, has been that developed by Marzari and Vanderbilt
(1997) in which localization is enforced by introducing a

well-defined localization criterion, and then refining the UðkÞ
mn

in order to satisfy that criterion. We first give an overview
of this approach and then provide details in the following
sections.

First, the localization functional

! ¼
X

n

½h0njr2j0ni # h0njrj0ni2' ¼
X

n

½hr2in # "r2n'

(18)

is defined, measuring the sum of the quadratic spreads of the
J WFs in the home unit cell around their centers. This turns
out to be the solid-state equivalent of the Foster-Boys crite-
rion of quantum chemistry (Boys, 1960, 1966; Foster and
Boys, 1960a, 1960b). The next step is to express ! in terms
of the Bloch functions. This requires some care, since expec-
tation values of the position operator are not well defined in
the Bloch representation. The needed formalism will be
discussed briefly in Sec. II.C.1 and more extensively in
Sec. V.A.1, with much of the conceptual work stemming
from the earlier development of the modern theory of polar-
ization (Blount, 1962; Resta, 1992, 1994; King-Smith and
Vanderbilt, 1993; Vanderbilt and King-Smith, 1993).

Once a k-space expression for ! has been derived, maxi-
mally localized WFs are obtained by minimizing it with

respect to the UðkÞ
mn appearing in Eq. (10). This is done as a

3One can prove that this transformation is unitary by performing
the singular value decomposition A ¼ ZDWy, with Z andW unitary
and D real and diagonal. It follows that AðAyAÞ# 1=2 is equal to
ZWy, and thus unitary.
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from the earlier development of the modern theory of polar-
ization (Blount, 1962; Resta, 1992, 1994; King-Smith and
Vanderbilt, 1993; Vanderbilt and King-Smith, 1993).

Once a k-space expression for ! has been derived, maxi-
mally localized WFs are obtained by minimizing it with

respect to the UðkÞ
mn appearing in Eq. (10). This is done as a

3One can prove that this transformation is unitary by performing
the singular value decomposition A ¼ ZDWy, with Z andW unitary
and D real and diagonal. It follows that AðAyAÞ# 1=2 is equal to
ZWy, and thus unitary.
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Bloch functions (more precisely): 

ψnk(r) = unk(r) eik·r eiφnk

gauge freedom → ambiguity



Two flavours of Wannier functions

Ga As

Atom centered sp3-like

• includes bonding and 
antibonding states

• building effective hamiltonian

Bond centered s-like

is invariant, even though the j~c nki resulting from Eq. (8) are
no longer generally eigenstates ofH, and n is no longer a band
index in the usual sense.

Our goal is again to construct WFs out of these trans-
formed Bloch functions using Eq. (3). Figures 2(a) and 2(b)
show, for example, what the result might eventually look like
for the case of the four occupied valence bands of Si or GaAs,
respectively. From these four bands, one obtains four equiva-
lent WFs per unit cell, each localized on one of the four
nearest-neighbor Si-Si or Ga-As bonds. The presence of a
bond-centered inversion symmetry for Si, but not GaAs, is
clearly reflected in the shapes of the WFs.

Again, we emphasize that the gauge freedom expressed in
Eq. (8) implies that the WFs are strongly nonunique. This is
illustrated in Fig. 3, which shows an alternative construction
of WFs for GaAs. The WF on the left was constructed from
the lowest valence band n ¼ 1, while the one on the right is
one of three constructed from bands n ¼ 2–4. The former
has primarily As s character and the latter has primarily
As p character, although both (and especially the latter)
contain some Ga s and p character as well. The WFs of
Figs. 2(b) and 3 are related to each other by a certain manifold

of 4" 4 unitary matrices UðkÞ
nm relating their Bloch transforms

in the manner of Eq. (8).
However, before we can arrive at well-localized WFs such

as those shown in Figs. 2 and 3, we again have to address
questions of smoothness of the gauge choice expressed in
Eq. (8). This issue is even more profound in the present
multiband case, since this smoothness criterion is generally
incompatible with the usual construction of Bloch functions.
That is, if we simply insert the usual Bloch functions jc nki,
defined to be eigenstates of H, into the right-hand side of
Eq. (3), it is generally not possible to produce well-localized
WFs. The problem arises when there are degeneracies among
the bands in question at certain locations in the Brillouin

zone. Consider, for example, what happens if we try to
construct a single WF from the highest occupied band
n ¼ 4 in GaAs. This would be doomed to failure, since this
band becomes degenerate with bands two and three at the
zone center ! as shown in Fig. 3. As a result, band four is
nonanalytic in k in the vicinity of !. The Fourier transform of
Eq. (3) would then result in a poorly localized object having
power-law tails in real space.

In such cases, therefore, the extra unitary mixing expressed
in Eq. (8) is mandatory, even if it may be optional in the case
of a set of discrete bands that do not touch anywhere in the
BZ. So, generally speaking, our procedure must be that we
start from a set of Hamiltonian eigenstates jc nki that are not
per se smooth in k, and introduce unitary rotations UðkÞ

mn that
‘‘cancel out’’ the discontinuities in such a way that smooth-
ness is restored, i.e., that the resulting j~c nki of Eq. (8) obey
the smoothness condition that rkj~c nki remains regular at all
k. Then, when these j~c nki are inserted into Eq. (3) in place of
the jc nki, well-localized WFs should result. Explicitly, this
results in WFs constructed according to

jRni ¼ V

ð2!Þ3
Z
BZ

dke% ik&R XJ

m¼1

UðkÞ
mnjc mki: (10)

The question remains how to choose the unitary rotations

UðkÞ
mn so as to accomplish this task. We will see that one way to

do this is to use a projection technique, as outlined in Sec. II.A.3.
Ideally, however, we want the construction to result in WFs
that are ‘‘maximally localized’’ according to some criterion.
Methods for accomplishing this are discussed in Sec. II.C

3. Normalization conventions

In the above equations, formulated for continuous k, we
adopted the convention that Bloch functions are normalized
to one unit cell

R
V drjc nkðrÞj2 ¼ 1, even though they extend

over the entire crystal. We also define hfjgi as the integral of
f'g over all space. With this notation, hc nkjc nki is not unity;
instead, it diverges according to the rule

hc nkjc mk0 i ¼ ð2!Þ3
V

"nm"
3ðk % k0Þ: (11)

With these conventions it is easy to check that the WFs in
Eqs. (3) and (4) are properly normalized, i.e., hRnjR0mi ¼
"RR0"nm.

It is often more convenient to work on a discrete uniform k
mesh instead of continuous k space.2 Letting N be the
number of unit cells in the periodic supercell, or, equivalently,
the number of mesh points in the BZ, it is possible to keep the
conventions close to the continuous case by defining the
Fourier transform pair as

(a) (b)

FIG. 2 (color online). Maximally localized Wannier functions
(MLWFs) constructed from the four valence bands of Si (a) and
GaAs [(b); Ga at upper right, As at lower left], displaying the
character of #-bonded combinations of sp3 hybrids. Isosurfaces of
different shades of gray correspond to two opposite values for the
amplitudes of the real-valued MLWFs.

FIG. 3 (color online). MLWFs constructed from the s band (left)
or from the three p bands (right) of GaAs.

2The discretization of k space amounts to imposing periodic
boundary conditions on the Bloch wave functions over a supercell in
real space. Thus, it should be kept in mind that the WFs given by
Eqs. (12) and (14) are not truly localized, as they also display the
supercell periodicity (and are normalized to a supercell volume).
Under these circumstances the notion of ‘‘Wannier localization’’
refers to localization within one supercell, which is meaningful for
supercells chosen large enough to ensure negligible overlap between
a WF and its periodic images.
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 Wannier functions as a tight-binding basis (atom centered FW)

$ less GaAs-WANN_hr.dat
...
    0    0    0    1    1   -4.335108    0.000000
    0    0    0    2    1   -0.000001   
    0    0    0    3    1    0.000000   
    0    0    0    4    1   -0.000001   
    0    0    0    5    1   -1.472358   
    0    0    0    6    1   -1.157088   
    0    0    0    7    1   -1.157088   
    0    0    0    8    1   -1.157088   
...
    0    0    1    1    1   -0.001219   
...

Home
unit cell

Matrix element (eV)
〈s1|H|s1〉= Es1

|s1〉〈s1|

〈s2|

Matrix element (eV)
〈s2|H|s1〉= Vssσ

Neighbour
unit cell

WF are well localized
⇒ nearest-neighbour suffice

〈p2|H|s1〉= Vsp

Im part = 0



Band structure

+ original Wien2k band structure
- Band structure computed from Wannier hamiltonian
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Relation to polarization (bond centered WF)

of magnetization’’ in the 2000s (Thonhauser et al., 2005;
Xiao, Shi, and Niu, 2005; Ceresoli et al., 2006; Shi et al.,
2007; Souza and Vanderbilt, 2008). Useful reviews of these
topics have appeared (Resta, 2000, 2010; Vanderbilt and
Resta, 2006; Resta and Vanderbilt, 2007).

These theories can be formulated either in terms of Berry
phases and curvatures or, equivalently, by working in the
Wannier representation. The basic idea of the latter is to
consider a large but finite sample surrounded by vacuum and
carry out a unitary transformation from the set of delocalized
Hamiltonian eigenstates c j to a set of Wannier-like localized

molecular orbitals !j. Then one can use Eq. (84) or Eq. (85),
with c j replaced by !j, to evaluate the electric or orbital

magnetic dipole moment per unit volume in the thermody-
namic limit. In doing so, care must be taken to consider
whether any surface contributions survive in this limit.

In this section, we briefly review the modern theories of
electric polarization and orbital magnetization and related
topics. The results given in this section are valid for any set
of localized WFs; maximally localized ones do not play any
special role. Nevertheless, the close connection to the theory
of polarization has been one of the major factors behind the
resurgence of interest in WFs. Furthermore, we see that the
use of MLWFs can provide a very useful, if heuristic, local
decomposition of polar properties in an extended system. For
these reasons, it is appropriate to review the subject here.

A. Wannier functions, electric polarization, and localization

1. Relation to Berry-phase theory of polarization

Here we briefly review the connection between the
Wannier representation and the Berry-phase theory of polar-
ization (King-Smith and Vanderbilt, 1993; Vanderbilt and
King-Smith, 1993; Resta, 1994). Suppose that we have con-
structed via Eq. (8) a set of Bloch-like functions j ~c nki that
are smooth functions of k. Inserting these in place of jc nki
on the right side of Eq. (3), the WFs in the home unit cell
R ¼ 0 are simply

j0n i ¼ V

ð2"Þ3
Z
BZ

dkj ~c nki: (86)

To find their centers of charge, we note that

rj0n i ¼ V

ð2"Þ3
Z
BZ

dkð$ irke
ik%rÞj~u nki: (87)

Performing an integration by parts and applying h0n j on the
left, the center of charge is given by

rn ¼ h0n jrj0n i ¼ V

ð2"Þ3
Z
BZ

dkh~u nkjirkj~u nki; (88)

which is a special case of Eq. (23). Then, in the home unit
cell, in addition to the ionic charges þ eZ# located at positions
r#, we can imagine electronic charges $ e located at positions
rn .

13 Taking the dipole moment of this imaginary cell and
dividing by the cell volume, we obtain, heuristically

P ¼ e

V

!X

#

Z#r# $
X

n

rn

"
(89)

for the polarization.
This argument can be put on somewhat firmer ground by

imagining a large but finite crystallite cut from the insulator
of interest, surrounded by vacuum. The crystallite is divided
into an ‘‘interior’’ bulklike region and a ‘‘skin’’ whose vol-
ume fraction vanishes in the thermodynamic limit. The dipole
moment is computed from Eq. (84), by using LMOs !j in
place of the Hamiltonian eigenfunctions c j on the right-hand
side. Arguing that the contribution of the skin to d is negli-
gible in the thermodynamic limit and that the interior LMOs
become bulk WFs, one can construct an argument that arrives
again at Eq. (89).

If these arguments still seem sketchy, Eq. (89) can be
rigorously justified by noting that its second term,

Pel ¼ $ e

ð2"Þ3
X

n

Z
BZ

dkh~u nkjirkj~u nki; (90)

is precisely the expression for the electronic contribution to
the polarization in the Berry-phase theory (King-Smith and
Vanderbilt, 1993; Vanderbilt and King-Smith, 1993; Resta,
1994), which was derived by considering the flow of charge
during an arbitrary adiabatic change of the crystalline
Hamiltonian.

The Berry-phase theory can be regarded as providing a
mapping of the distributed quantum-mechanical electronic
charge density onto a lattice of negative point charges of
charge $ e, as illustrated in Fig. 21. Then the change of
polarization resulting from any physical change, such as the
displacement of one atomic sublattice or the application of an
electric field, can be related in a simple way to the displace-
ments of the Wannier centers rn occurring as a result of this
change.

Awell-known feature of the Berry-phase theory is that the
polarization is only well defined modulo a quantum eR=V,
where R is a real-space lattice vector. Such an indeterminacy
is immediately obvious from Eq. (89), since the choice of
which WFs are assigned to the home unit cell (R ¼ 0), or, for
that matter, which ions are assigned to it, is arbitrary. Shifting
one of these objects by a lattice vector R merely changes P
by the quantum. Correspondingly, it can be shown that an

(a) (b)

FIG. 21. Illustration of mapping from physical crystal onto
equivalent point-charge system with correct dipolar properties.
(a) True system composed of point ions (þ ) and charge cloud
(contours). (b) Mapped system in which the charge cloud is replaced
by quantized electronic charges ($ ). In the illustrated model there
are two occupied bands, i.e., two Wannier functions per cell.

13In these formulas, the sum over n includes a sum over spin.
Alternatively a factor of 2 can be inserted to account explicitly for
spin.
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Material properties related to polarization
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Modern theory of polarization
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Pioneered by King-Smith, David Vanderbilt and Raffaele Resta
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Components of polarization

King-Smith and David Vanderbilt, Phys. Rev. B 47, 1651 (1993)

P = Pion + Pel

Pion =
e

⌦

atomsX

s

Z ion
s rs

+

0

Pion =
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s rs
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s
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s rs

In Wien2k Zsion is the core charge

= ⌦�1

occ.
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⌘ 2ei

(2⇡)3
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Z
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dk hunk|rk|unki
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Z
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ionic electronic

r̂ = i∇k(                 position operator in k-space)

Berry connection 
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Choice of a reference structure
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Demonstration: Born effective charge of GaN
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Topological properties (new functionality 2019)

TaAs (Weyl semimetal)

The results are plotted in Fig. 2(d), which shows that
MCN is 1 for the ZNΓ plane (My ) and the Z2 index is even
or trivial for the ZXΓ plane (Mxy ). Then, if we consider
the (001) surface, which is invariant under the My mirror.
The nontrivial helical surface modes will appear because
of the nonzero MCN in the ZNΓ plane, which generates a
single pair of FS cuts along the projective line of the ZNΓ
plane [the x axis in Fig. 2(c)]. Whether these Fermi cuts will
eventually form a single closed Fermi circle or not depends
on the Z2 index for the two glide mirror planes, which are
projected to the dashed blue lines in Fig. 2(c). Since the Z2

indices for the glide mirror planes are trivial, as confirmed
by our Wilson-loop calculation plotted in Fig. 2(d), there
are no protected helical edge modes along the projective
lines of the glide mirror planes [dashed blue lines in
Fig. 2(c)], and the Fermi cuts along the x axis in Fig. 2(c)
must end somewhere between the x axis and the diagonal
lines [dashed blue lines in Fig. 2(c)]. In other words, they
must be Fermi arcs, indicating the existence ofWeyl points
in the bulk band structure of TaAs.

From the above analysis of the MCN and Z2 index of
several high-symmetry planes, we can conclude that Weyl
points exist in the TaAs band structure. We now determine
the total number of Weyl points and their exact positions.
This is a hard task, as the Weyl points are located at generic
k points without any little-group symmetry. For this
purpose, we calculate the integral of the Berry curvature
on a closed surface in k space, which equals the total
chirality of the Weyl points enclosed by the given surface.
Because of the fourfold rotational symmetry and mirror
planes that characterize TaAs, we only need to search for
the Weyl points within the reduced BZ—one-eighth of the
whole BZ. We first calculate the total chirality or monopole
charge enclosed in the reduced BZ. The result is 1, which
guarantees the existence of, and odd number of, Weyl
points. To determine precisely the location of each Weyl
point, we divide the reduced BZ into a very dense k -point
mesh and compute the Berry curvature or the “magnetic
field in momentum space” [35,38] on that mesh, as shown
in Fig. 3. From this, we can easily identify the precise

0.8 10.60.40.20
-1

-0.5

0

0.5

1

φ
π

-1

-0.5

0

0.5
1

φ
π

Z

Γ

S

N

Σ

Z

S

ΣS

Σ

(b)(a)
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FIG. 2. Nodal rings and Weyl points distribution, as well as Z2 and MCN for mirror planes. (a) 3D view of the nodal rings (in the
absence of SOC) and Weyl points (with SOC) in the BZ. (b) Side view from [100] and (c) top view from [001] directions for the nodal
rings and Weyl points. Once the SOC is turned on, the nodal rings are gapped and give rise to Weyl points off the mirror planes (see
movie in Supplemental Material [36]). (d) Top panel: Flow chart of the average position of the Wannier centers obtained by Wilson-loop
calculation for bands with mirror eigenvalue i in the mirror plane ZNΓ. (d) Bottom panel: The flow chart of the Wannier centers obtained
by Wilson-loop calculation for bands in the glide mirror plane ZXΓ. There is no crossing along the reference line (the dashed line),
indicating the Z2 index is even.
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Weyl point “charge”

Weng et al.,  
Physical Review X 5, 011029 (2015)

Weyl point

Wilson loop

Berry connection

Stokes’ theorem

position of the Weyl points by searching for the “source”
and “drain” points of the “magnetic field.” The Weyl points
in TaAs are illustrated in Fig. 2(a), where we find 12 pairs
of Weyl points in the vicinity of what used to be, in the
SOC-free case, the nodal rings on two of the mirror-
invariant planes. For each of the mirror-invariant planes,
after turning on SOC, the nodal rings will be fully gapped
within the plane, but isolated gapless nodes slightly off
plane appear, as illustrated in Fig. 2(b). Two pairs of Weyl
points are located exactly in the kz ¼ 0 plane, and another
four pairs of Weyl points are located off the kz ¼ 0 plane.
Considering the fourfold rotational symmetry, it is then
easy to understand that there are a total of 12 pairs of Weyl
points in the whole BZ. The Weyl points in the kz ¼ 0
plane are about 2 meV above the Fermi energy and form
eight tiny hole pockets, while the others are about 21 meV
below the Fermi level to form 16 electron pockets. The

appearance of Weyl points can also be derived from a
k · p model with different types of mass terms induced by
SOC, which will be introduced in detail in the Appendix.
The band structures for the other three materials—TaP,
NbAs, and NbP—are very similar. The precise positions
of the Weyl points for all these materials are summarized
in Table. I.

C. Fermi arcs and surface states

Unique surface states with unconnected Fermi arcs can
be found on the surface of a WSM. These can be under-
stood in the following way: For any surface of a WSM,
we can consider small cylinders in the momentum space
parallel to the surface normal. In the 3D BZ, these cylinders
will be cut by the zone boundary, and their topology is
equivalent to that of a closed torus rather than that of open
cylinders. If a cylinder encloses a Weyl point, by Stokes
theorem, the total integral of the Berry curvature (Chern
number) of this closed torus must equal the total “monopole
charge” carried by the Weyl point(s) enclosed inside. On
the surface of the material, such a cylinder will be projected
to a cycle surrounding the projection point of the Weyl
point, and a single Fermi surface cut stemming from the
chiral edge model of the 2D manifold with Chern number 1
(or −1) must be found on that circle. By varying the radius
of the cylinder, it is easy to show that such FSs must start
and end at the projection of two (or more) Weyl points with
different “monopole charge”; i.e., they must be “Fermi
arcs” [7,9,16]. In the TaAs materials family, on most of the
common surfaces, multiple Weyl points will be projected
on top of each other, and we must generalize the above
argument to multiple projections of Weyl points. It is easy
to prove that the total number of surface modes at the Fermi
level crossing a closed circle in surface BZ must equal the
sum of the “monopole charge” of the Weyl points inside the
3D cylinder that projects to the given circle. Another fact
controlling the behavior of the surface states is the MCN
introduced in the previous discussion, which limits the
number of FSs cutting certain projection lines of the mirror
plane (when the corresponding mirror symmetries are still
preserved on the surface).
By using the Green’s function method [5] based on the

tight-binding (TB) Hamiltonian generated by the previ-
ously obtained Wannier functions, we have computed the

(a)

(b)

FIG. 3. Berry curvature from pairs of Weyl points. (a) The
distribution of the Berry curvature for the kz ¼ 0 plane, where the
blue and red dots denote the Weyl points with chirality of þ1 and
−1, respectively; (b) same as (a) but for the kz ¼ 0.592π plane.
The insets show the 3D view of hedgehoglike Berry curvature
near the two selected Weyl points.

TABLE I. The two nonequivalent Weyl points in the xyz
coordinates shown in Fig. 1(b). The position is given in units
of the length of Γ-Σ for x and y and of the length of Γ-Z for z.

Weyl node 1 Weyl node 2

TaAs (0.949, 0.014, 0.0) (0.520, 0.037, 0.592)
TaP (0.955, 0.025, 0.0) (0.499, 0.045, 0.578)
NbAs (0.894, 0.007, 0.0) (0.510, 0.011, 0.593)
NbP (0.914, 0.006, 0.0) (0.494, 0.010, 0.579)
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Semiconductor alloys

(InGa)N(InGaAl)P
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Unfolding the first-principle band structure
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FIG. 1. Relation between k-mesh in the reciprocal space for a square primitive lattice (a) and that for a 3 × 2 supercell (b). The first BZ is
outlined on both panels. The overlay of both patterns is shown on the panel (c). The overlapped points form a subgroup ofK that represents
the Bloch wave vector k. There is a total of 6 subgroups (3× 2), which indicates that eachK-point in the supercell bears information about 6
k-points of the primitive basis.

of a primitive cell as originally introduced by Popescu and
Zunger [2, 10]. Here we briefly review the basics of this
method.
The PW expansion alone

Ψn,K(r) =
∑

G

Cn,K(G) ei(K+G)·r (1)

or its combination with a local basis set (such as augmented
plane-waves) is a popular choice for representing wave func-
tions in periodic solids. Here n refers to a particular eigenstate
(band index),K is the wave vector within the first BZ and C
are expansion coefficients. The summation runs over a set
ofK-points repeated with periodicity of the reciprocal lattice
vectors G1, G2 and G3. The plane wave cut-off Gmax de-
termines the range of the summation and, therefore, the com-
pleteness of the basis set. The general form of expansion (1)
is identical irrespective of whether a supercell or a primitive
cell basis is used. We will employ upper-case and lower-case
notations in order to distinguish between these two cases, re-
spectively.
Figure 1 (a,b) illustrates the reciprocal space mesh in two

dimensions for a primitive cubic lattice and its supercell of
the size 3× 2. Each point on this mesh is associated with
an individual PW, and can be assigned a relative “weight”
of |Cn,K(G)|2. When the two meshes corresponding to the
primitive cell and supercell overlay as shown in Fig. 1(c), it
is possible to match the supercell K and the primitive Bloch
wave k PW expansion coefficients

Cn,K(G) → cn,k(g) (2)

at the points which fulfill

K+G = k+ g . (3)

As can be seen in Fig. 1(c), any K-point transforms into
N1N2N3k-points in the first primitive BZ under the transla-
tion

k = K+m1G1+m2G2+m3G3 (4)

with mi = 0,1, . . .Ni −1that extends up to the scaling fac-
tor Ni used when constructing the supercell along i’s axis.
This generates a multitude of “unfolded” Bloch wave vectors,
each with its own subgroup of the PW expansion coefficients
Cn,K(k + g). Thus, the individual “weights” of unfolded k-
points are expressed in terms of the PW coefficients which
belong to the subgroup of k

wn(k) =
∑

g

|Cn,K(k+ g)|2 . (5)

Note that the subgroups are formed by the translation vec-
tors g, notG. In order to facilitate the mapping, the supercell
needs to be generated by translation of the primitive cell along
its lattice vectors in real space, which implies a simple rela-
tion between the reciprocal lattice vectors gi = miGi. If
latter is not the case, an additional coordinate transformation
(miGi → gi) is required for the resultant wave vectors k
given by Eq. (4).

III. APPLICATIONS

A. Dilute GaP:N

Group III-V dilute nitride semiconductors continue to be
in the focus since the 1990’s as a material system for long-
wavelength telecommunication and photovoltaic applications
[14, 15]. In spite of the fact that nitrides (GaN and AlN) are
wide-bandgap semiconductors, addition of a small fraction of
nitrogen (a few percent) in the host III-V semiconductors, e.g.
GaAs, results in a drastic reduction of their energy gap. This
narrowing of the band gap is attributed to an anticrossing be-
tween extended states of the host conduction band and the lo-
calized nitrogen resonant states [16].
Ga(NP) was a progenitor of modern dilute nitrides [17]. It

was shown that nitrogen and its complexes behave in GaP
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Cn,K(G) ei(K+G)·r (1)

or its combination with a local basis set (such as augmented
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tions in periodic solids. Here n refers to a particular eigenstate
(band index),K is the wave vector within the first BZ and C
are expansion coefficients. The summation runs over a set
ofK-points repeated with periodicity of the reciprocal lattice
vectors G1, G2 and G3. The plane wave cut-off Gmax de-
termines the range of the summation and, therefore, the com-
pleteness of the basis set. The general form of expansion (1)
is identical irrespective of whether a supercell or a primitive
cell basis is used. We will employ upper-case and lower-case
notations in order to distinguish between these two cases, re-
spectively.
Figure 1 (a,b) illustrates the reciprocal space mesh in two
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the size 3× 2. Each point on this mesh is associated with
an individual PW, and can be assigned a relative “weight”
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is possible to match the supercell K and the primitive Bloch
wave k PW expansion coefficients

Cn,K(G) → cn,k(g) (2)

at the points which fulfill

K+G = k+ g . (3)

As can be seen in Fig. 1(c), any K-point transforms into
N1N2N3k-points in the first primitive BZ under the transla-
tion

k = K+m1G1+m2G2+m3G3 (4)

with mi = 0,1, . . .Ni −1that extends up to the scaling fac-
tor Ni used when constructing the supercell along i’s axis.
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points are expressed in terms of the PW coefficients which
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Note that the subgroups are formed by the translation vec-
tors g, notG. In order to facilitate the mapping, the supercell
needs to be generated by translation of the primitive cell along
its lattice vectors in real space, which implies a simple rela-
tion between the reciprocal lattice vectors gi = miGi. If
latter is not the case, an additional coordinate transformation
(miGi → gi) is required for the resultant wave vectors k
given by Eq. (4).

III. APPLICATIONS

A. Dilute GaP:N

Group III-V dilute nitride semiconductors continue to be
in the focus since the 1990’s as a material system for long-
wavelength telecommunication and photovoltaic applications
[14, 15]. In spite of the fact that nitrides (GaN and AlN) are
wide-bandgap semiconductors, addition of a small fraction of
nitrogen (a few percent) in the host III-V semiconductors, e.g.
GaAs, results in a drastic reduction of their energy gap. This
narrowing of the band gap is attributed to an anticrossing be-
tween extended states of the host conduction band and the lo-
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Figure 9: Folded (a) and e↵ective (b, c) band structure of 250-atoms supercell unfolded to
the primitive Brillouin zone: pure Si (a, b) and random Si0.7Ge0.3 alloy (d). The Bloch
character in Si0.7Ge0.3 alloy is well preserved at the top of the valence band (VBE), whereas
the electronic states at the bottom of the conduction band (CBE) are more disordered. The
bottom row illustrates Si175Ge75 supercell (d) and the Kohn-Sham orbitals | n,K(r)|2 that
correspond to the top of the valence band (e) and the bottom of the conduction band (f).
The structure and isosurface plots were created with the help of the ABINIT cut3d utility
and VESTA 3 package [150].

elements.

6. On-going developments

6.1. Interpolation technique for BSE

An accurate description of dielectric properties within the BSE formalism
presented in Sec. 3.5.1 usually requires the sampling of a large number of k-
points in the Brillouin Zone. The large computational cost associated to this
dense sampling renders well-converged BSE calculations prohibitive. This is
especially true when derived properties e.g. Raman spectra are wanted [76].

Di↵erent numerical techniques have been proposed in the literature to im-
prove the convergence rate. For example, Rohlfing & Louie [151] developed a
double-grid technique in which the matrix elements of the BSE Hamiltonian
evaluated on a coarse grid are then interpolated towards a denser grid. This
scheme accelerates the convergence of the dielectric function with a computa-
tional cost that is significantly reduced with respect to a full calculation. In
the spirit of this technique, we have generalized the Rohlfing & Louie approach
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character in Si0.7Ge0.3 alloy is well preserved at the top of the valence band (VBE), whereas
the electronic states at the bottom of the conduction band (CBE) are more disordered. The
bottom row illustrates Si175Ge75 supercell (d) and the Kohn-Sham orbitals | n,K(r)|2 that
correspond to the top of the valence band (e) and the bottom of the conduction band (f).
The structure and isosurface plots were created with the help of the ABINIT cut3d utility
and VESTA 3 package [150].
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Demonstration: Band structure of Si1-xGex alloy (x ~ 0.2)
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Thermoelectric material: Si0.7Ge0.3
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Figure 9: Folded (a) and e↵ective (b, c) band structure of 250-atoms supercell unfolded to
the primitive Brillouin zone: pure Si (a, b) and random Si0.7Ge0.3 alloy (d). The Bloch
character in Si0.7Ge0.3 alloy is well preserved at the top of the valence band (VBE), whereas
the electronic states at the bottom of the conduction band (CBE) are more disordered. The
bottom row illustrates Si175Ge75 supercell (d) and the Kohn-Sham orbitals | n,K(r)|2 that
correspond to the top of the valence band (e) and the bottom of the conduction band (f).
The structure and isosurface plots were created with the help of the ABINIT cut3d utility
and VESTA 3 package [150].
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Figure 9: Folded (a) and e↵ective (b, c) band structure of 250-atoms supercell unfolded to
the primitive Brillouin zone: pure Si (a, b) and random Si0.7Ge0.3 alloy (d). The Bloch
character in Si0.7Ge0.3 alloy is well preserved at the top of the valence band (VBE), whereas
the electronic states at the bottom of the conduction band (CBE) are more disordered. The
bottom row illustrates Si175Ge75 supercell (d) and the Kohn-Sham orbitals | n,K(r)|2 that
correspond to the top of the valence band (e) and the bottom of the conduction band (f).
The structure and isosurface plots were created with the help of the ABINIT cut3d utility
and VESTA 3 package [150].
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Figure 9: Folded (a) and e↵ective (b, c) band structure of 250-atoms supercell unfolded to
the primitive Brillouin zone: pure Si (a, b) and random Si0.7Ge0.3 alloy (d). The Bloch
character in Si0.7Ge0.3 alloy is well preserved at the top of the valence band (VBE), whereas
the electronic states at the bottom of the conduction band (CBE) are more disordered. The
bottom row illustrates Si175Ge75 supercell (d) and the Kohn-Sham orbitals | n,K(r)|2 that
correspond to the top of the valence band (e) and the bottom of the conduction band (f).
The structure and isosurface plots were created with the help of the ABINIT cut3d utility
and VESTA 3 package [150].
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Impact of alloying disorder on charge transport

CdTe → (HgCd)Te GaAs → Ga(AsBi)

μh = 200 → 10 cm2V-1s-1
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(a) (b)

〉〈

FIG. 5. (Color online) Band order and symmetry labels for HgTe and CdTe compounds (a). These two compounds exhibit a band inversion
(!6 ↔ !8) and, thus, have different “topology.” As the composition Hg1−xCdxTe varies between two binary compounds, a topological band
crossover occurs. The crossover takes place near xc ≈0.19 and is accompanied by emergence of massless Kane fermions at the ! point (b).
Regions of the band structure perturbed by disorder are labeled with arrows. The disorder affects only the electronic states located 1−3 eV
above and below the Fermi energy.

for instance. The electronic structure of GaAs1−xBix cannot
evolve “smoothly” in the range 0 < x < 1 and must undergo a
topological phase transition. This transition is accompanied
by a gradual transformation of the host GaAs parabolic
conduction band to a graphenelike cone with increasing x;
electrons ultimately become massless fermions as it will be
shown later. Verification of this prediction would require
electron transport measurements in GaAs1−xBix for a wide
range of x. So far, the successful incorporation of Bi in GaAs
under 12% has been reported [43]. The lattice mismatch of
12% between GaAs and GaBi is one of the main factors that
limits their solubility.

C. (HgCd)Te alloy

Hg1−xCdxTe (HCT) is an example of a material system
with the topological band inversion [44], which is similar
to GaAs1−xBix discussed in the preceding Sec. III B. The

arrangement of bands in binary HgTe and CdTe as well as
their symmetry are shown at Fig. 5(a). The conduction band
minimum and the valence band maximum of CdTe have !6
and !8 symmetries, respectively. In HgTe, the order of bands
is inverted due to a strong spin-orbit interaction [45]. The
crossover between the !6 and !8 bands is inevitable in the
course of a gradual change in the composition of ternary
Hg1−xCdxTe alloy as illustrated by dashed lines in Fig. 5(a).
The prominent feature of HCT is the presence of massless
Kane fermions [46] at the crossover composition [Fig. 5(b)],
whose experimental observation was recently reported by
Orlita et al. [47].

The evolution of the Hg1−xCdxTe band structure as a
function of composition is shown in Fig. 6. The composition
range was chosen to cover the transition from a semimetal with
a negative band gap to an insulator. The negative gap gradually
shrinks with increasing the Cd content [Fig. 6(a)] until
threefold degeneracy is established at a critical composition

(a) (b) (c) (d)

FIG. 6. (Color online) Evolution of the band structure in ternary (HgCd)Te alloy near the ! point as a function of the chemical composition:
Hg25Cd2Te27 (a), Hg22Cd5Te27 (b), Hg20Cd7Te27 (c), and Hg5Cd22Te27 (d). The transition from a semimetal (a) to an insulator (c),(d) occurs
by passing through a Kane point (b). The nearly linear dispersion E ∝ |k|, which is characteristic of the Kane point, persists in the conduction
band after opening of the band gap (c).
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Wannier functions: workflow

WIEN2WANNIER 1.0 User’s Guide

From linearized augmented plane waves to maximally localized Wannier functions.

JAN KUNEŠ PHILIPP WISSGOTT ELIAS ASSMANN

May 13, 2014

• Regular SCF calculation
• Band structure plot

• Initialize wien2wannier (init_w2w):
- select bands, init. projections, # of WF (case.inwf file)
- projected band structure “bands_plot_project” (case.win file)
- additional options related to entanglement (case.win file)

• Compute overlap matrix element Smn and projections Mmn (x w2w)

• Perform Wannierization (x wannier90):
- position of Wannier centers and spreads (case.wout file)
- Wannier hamiltonian (case_hr.dat file)

WIEN2WANNIER 1.0 User’s Guide

From linearized augmented plane waves to maximally localized Wannier functions.

JAN KUNEŠ PHILIPP WISSGOTT ELIAS ASSMANN

May 13, 2014

• Initialize plotting, select plotting range, r-mesh 
(write_inwplot)

• Evaluate WF on the r-mesh selected (x wplot)
• Convert the output of wplot into xcrysden format for plotting 

(wplot2xsf)

• Plot WF



Wannier functions: matrix elements

equal amplitudes all across the Brillouin zone. Thus, we can
construct

w0ðrÞ ¼
V

ð2!Þ3
Z
BZ

dkc nkðrÞ; (2)

where V is the real-space primitive cell volume and the
integral is carried over the BZ. (See Sec. II.A.3 for normal-
ization conventions.) Equation (2) can be interpreted as the
WF located in the home unit cell, as sketched in the top-right
panel of Fig. 1.

More generally, we can insert a phase factor e$ ik%R into the
integrand of Eq. (2), where R is a real-space lattice vector;
this has the effect of translating the real-space WF by R,
generating additional WFs such as w1 and w2 sketched in
Fig. 1. Switching to the Dirac bra-ket notation and introduc-
ing the notation that Rn refers to the WF wnR in cell R
associated with band n, WFs can be constructed according to
(Wannier, 1937)

jRni ¼ V

ð2!Þ3
Z
BZ

dke$ ik%Rjc nki: (3)

It is easily shown that the jRni form an orthonormal set (see
Sec. II.A.3) and that two WFs jRni and jR0ni transform into
each other under translation by the lattice vector R $ R0

(Blount, 1962). Equation (3) takes the form of a Fourier
transform, and its inverse transform is

jc nki ¼
X

R

eik%RjRni (4)

(see Sec. II.A.3). Any of the Bloch functions on the left side
of Fig. 1 can thus be built up by linearly superposing the
WFs shown on the right side, when the appropriate phases
eik%R are used.

The transformations of Eqs. (3) and (4) constitute a unitary
transformation between Bloch and Wannier states. Thus, both
sets of states provide an equally valid description of the band
subspace, even if the WFs are not Hamiltonian eigenstates.
For example, the charge density obtained by summing the
squares of the Bloch functions jc nki or the WFs jRni is
identical; a similar reasoning applies to the trace of any
one-particle operator. The equivalence between the Bloch
and Wannier representations can also be made manifest by
expressing the band projection operator P in both represen-
tations, i.e., as

P ¼ V

ð2!Þ3
Z
BZ

dkjc nkihc nkj ¼
X

R

jRnihRnj: (5)

WFs thus provide an attractive option for representing the
space spanned by a Bloch band in a crystal, being localized
while still carrying the same information contained in the
Bloch functions.

1. Gauge freedom

The theory of WFs is made more complex by the presence
of a ‘‘gauge freedom’’ that exists in the definition of the c nk.
In fact, we can replace

j~c nki ¼ ei’n ðkÞjc nki; (6)

or, equivalently,

j~unki ¼ ei’n ðkÞjunki; (7)

without changing the physical description of the system, with
’nðkÞ being any real function that is periodic in reciprocal
space.1 A smooth gauge could, e.g., be defined such that
rkjunki is well defined at all k. Henceforth we assume that
the Bloch functions on the right-hand side of Eq. (3) belong to
a smooth gauge, since we would not get well-localized WFs
on the left-hand side otherwise. This is typical of Fourier
transforms: the smoother the reciprocal-space object, the
more localized the resulting real-space object, and vice versa.

One way to see this explicitly is to consider the R ¼ 0
home cell wn0ðrÞ evaluated at a distant point r; using Eq. (1)
in Eq. (3), this is given by

R
BZ unkðrÞeik%rdk, which will be

small due to cancellations arising from the rapid variation of
the exponential factor, provided that unk is a smooth function
of k (Blount, 1962).

It is important to realize that the gauge freedom of
Eqs. (6) and (7) propagates into the WFs. That is, different
choices of smooth gauge correspond to different sets of WFs
having in general different shapes and spreads. In this sense,
the WFs are ‘‘more nonunique’’ than the Bloch functions,
which acquire only a phase change. We also emphasize that
there is no ‘‘preferred gauge’’ assigned by the Schrödinger
equation to the Bloch orbitals. Thus, the nonuniqueness of the
WFs resulting from Eq. (3) is unavoidable.

2. Multiband case

Before discussing how this nonuniqueness might be re-
solved, we first relax the condition that band n be a single
isolated band, and consider instead a manifold of J bands that
remain separated with respect to any lower or higher bands
outside the manifold. Internal degeneracies and crossings
among the J bands may occur in general. In the simplest
case this manifold corresponds to the occupied bands of an
insulator, but more generally it consists of any set of bands that
is separated by a gap from both lower and higher bands
everywhere in the Brillouin zone. Traces over this band mani-
fold are invariant with respect to any unitary transformation
among the J Bloch orbitals at a given wave vector, so it is
natural to generalize the notion of a ‘‘gauge transformation’’ to

j~c nki ¼
XJ

m¼ 1

UðkÞ
mn jc mki: (8)

Here UðkÞ
mn is a unitary matrix of dimension J that is periodic in

k, with Eq. (6) corresponding to the special case of a diagonal
U matrix. It follows that the projection operator onto this band
manifold at wave vector k

Pk ¼
XJ

n¼ 1

jc nkihc nkj ¼
XJ

n¼ 1

j~c nkih~c nkj (9)

1More precisely, the condition is that ’n ðkþ GÞ¼ ’n ðkÞþ G%!R
for any reciprocal-lattice translation G, where !R is a real-space
lattice vector. This allows for the possibility that ’n may shift by 2!
times an integer upon translation by G; the vector !R expresses the
corresponding shift in the position of the resulting WF.
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case in which one wants to construct a set of WFs that spans a
subspace containing, e.g., the partially occupied bands of
a metal.

These developments touched off a transformational shift in
which the computational electronic-structure community
started constructing maximally localized WFs (MLWFs) ex-
plicitly and using these for different purposes. The reasons
are manifold: WFs, akin to LMOs in molecules, provide an
insightful chemical analysis of the nature of bonding, and its
evolution during, say, a chemical reaction. As such, they
have become an established tool in the postprocessing of
electronic-structure calculations. More interestingly, there
are formal connections between the centers of charge of the
WFs and the Berry phases of the Bloch functions as they are
carried around the Brillouin zone. This connection is
embodied in the microscopic modern theory of polarization,
alluded to above, and has led to important advances in the
characterization and understanding of dielectric response and
polarization in materials. Of broader interest to the entire
condensed-matter community is the use of WFs in the con-
struction of model Hamiltonians for, e.g., correlated-electron
and magnetic systems. An alternative use of WFs as local-
ized, transferable building blocks has taken place in the
theory of ballistic (Landauer) transport, where Green’s func-
tions and self-energies can be constructed effectively in a
Wannier basis, or that of first-principles tight-binding (TB)
Hamiltonians, where chemically accurate Hamiltonians are
constructed directly on the Wannier basis, rather than fitted
or inferred from macroscopic considerations. Finally, the
ideas that were developed for electronic WFs have also
seen application in very different contexts. For example,
MLWFs have been used in the theoretical analysis of pho-
nons, photonic crystals, cold-atom lattices, and the local
dielectric responses of insulators.

Here we review these developments. We first introduce the
transformation from Bloch functions to WFs in Sec. II, dis-
cussing their gauge freedom and the methods developed for
constructing WFs through projection or maximal localiza-
tion. A ‘‘disentangling procedure’’ for constructing WFs for a
nonisolated set of bands (e.g., in metals) is also described. In
Sec. III we discuss variants of these procedures in which
different localization criteria or different algorithms are used,
and discuss the relationship to ‘‘downfolding’’ and linear-
scaling methods. Section IV describes how the calculation of
WFs has proved to be a useful tool for analyzing the nature of
the chemical bonding in crystalline, amorphous, and defec-
tive systems. Of particular importance is the ability to use
WFs as a local probe of electric polarization, as described in
Sec. V. There we also discuss how the Wannier representation
has been useful in describing orbital magnetization, NMR
chemical shifts, orbital magnetoelectric responses, and
topological insulators (TIs). Section VI describes Wannier
interpolation schemes, by which quantities computed on a
relatively coarse k-space mesh can be used to interpolate
faithfully onto an arbitrarily fine k-space mesh at relatively
low cost. In Sec. VII we discuss applications in which the
WFs are used as an efficient basis for the calculations of
quantum-transport properties, the derivation of semiempirical
potentials, and for describing strongly correlated systems.
Section VIII contains a brief discussion of the construction

and use of WFs in contexts other than electronic-structure
theory, including for phonons in ordinary crystals, photonic
crystals, and cold atoms in optical lattices. Finally, Sec. IX
provides a short summary and conclusions.

II. REVIEW OF BASIC THEORY

A. Bloch functions and Wannier functions

Electronic-structure calculations are often carried out
using periodic boundary conditions. This is the most natural
choice for the study of perfect crystals, and also applies to the
common use of periodic supercells for the study of non-
periodic systems such as liquids, interfaces, and defects.
The one-particle effective Hamiltonian H then commutes
with the lattice-translation operator TR, allowing one to
choose as common eigenstates the Bloch orbitals jc nki:

½H; TR" ¼ 0 ) c nkðrÞ ¼ unkðrÞeik!r; (1)

where unkðrÞ has the periodicity of the Hamiltonian.
Several Bloch functions are sketched on the left-hand side

of Fig. 1 for a toy model in which the band of interest is
composed of p-like orbitals centered on each atom. We
suppose that this band is an isolated band, i.e., it remains
separated by a gap from the bands below and above at all k.
Since Bloch functions at different k have different envelope
functions eik&r, one can expect to be able to build a localized
‘‘wave packet’’ by superposing Bloch functions of different
k. To get a localized wave packet in real space, we need to
use a very broad superposition in k space. But k lives in the
periodic Brillouin zone, so the best we can do is to choose

w0 (x)

Wannier functions

w1 (x)

w2 (x)

ψk0
(x)

Bloch functions

ψk1
(x)

ψk2
(x)

FIG. 1 (color online). Transformation from Bloch functions to
Wannier functions (WFs). Left: Real-space representation of three
of the Bloch functions eikxukðxÞ associated with a single band in 1D,
for three different values of the wave vector k. Filled circles indicate
lattice vectors, and thin lines indicate the eikx envelopes of each
Bloch function. Right: WFs associated with the same band, forming
periodic images of one another. The two sets of Bloch functions at
every k in the Brillouin zone and WFs at every lattice vector span
the same Hilbert space.
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related to Berry phase, 
electronic polarization

⟨0n|r|0n⟩ = i
V

(2π)3

∫
dk ⟨unk|∇k|unk⟩

r̂ = i∇k -- position operator

⟨0n|r|0n⟩ - position of the Wannier center

d'n = �ihunk|rk|unki · dk = �i lnhunk|un(k+dk)i

Smn(kj,kj+1) = humkj
|unkj+1

i

Discretization:

-- matrix elements



Wannier functions: disentanglement

+ original Wien2k band structure
- Band structure computed from Wannier hamiltonian

GaN

EF

En
er

gy
 (

eV
)

Wave vector

Ga-3d & N-2s}

Souza et al.:
PRB 65, 035109 (2001)



Wannier functions: useful resources 

• Jan Kuneš et al. “Wien2wannier: From linearized 
augmented plane waves to maximally localized Wannier 
functions”, Comp. Phys. Commun. 181, 1888 (2010).

• Wien2Wannier home and user guide:  
http://www.ifp.tuwien.ac.at/forschung/arbeitsgruppen/
cms/software-download/wien2wannier/

• Wannier90 home and user guide:  
http://www.wannier.org/

• Nicola Marzari et al. “Maximally localized Wannier 
functions: Theory and applications”, Rev. Mod. Phys. 84, 
1419 (2012)

http://www.ifp.tuwien.ac.at/forschung/arbeitsgruppen/cms/software-download/wien2wannier/
http://www.ifp.tuwien.ac.at/forschung/arbeitsgruppen/cms/software-download/wien2wannier/
http://www.wannier.org


Macroscopic polarization: Berry phase

King-Smith and David Vanderbilt, Phys. Rev. B 47, 1651 (1993)

d'n = �ihunk|rk|unki · dk = �i lnhunk|un(k+dk)i

'el,↵ = S�1
?

Z

S?
dS? '(kk)

'(kk) = 2 Im

2

4ln
J�1Y

j=0

det SM⇥M (kj,kj+1)

3

5

Smn(kj,kj+1) = humkj
|unkj+1

i WIEN2WANNIER

P↵ =
e('el,↵ + 'ion,↵)

2⇡⌦
R↵

http://publish.aps.org/search/field/author/R.%20D.%20King-Smith
http://publish.aps.org/search/field/author/David%20Vanderbilt


Macroscopic polarization: BerryPI workflow

Comput. Phys. Commun. 184, 647 (2013)

[command line]$ berrypi -k 6:6:6 [-s] [-j] [-o]

Need wien2k, wien2wannier, python 2.7.x and numpy

completed SCF cycle

generate k-mesh in the full BZ (kgen)

calculate wavefunctions (lapw1)

prepare nearest-neighbour k-point list

calculate overlap matrix Smn (w2w)

determine electron. and ion. phases

Polarization 
vector

Spin-polarized

Spin-orbit

Orbital potential
(e.g., LDA+U)



Macroscopic polarization: Choice of a reference structure

�P = P(0) �P(1)
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a) b)
x

y

z

O1

O2
O3

A

BO
2-

P
o

la
ri
z
a

ti
o

n

a) b)
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z

O1

O2
O3

• structure file must preserve the symmetry
• begin with the lowest symmetry (λ1) case
• copy case λ1 to case λ0

• edit structure file for case λ0

• do not initialize calculation (init_lapw)
• update density (x dstart)
• run SCF cycle (run[sp]_lapw [-so -orb])
• run BerryPI

λ0 λ1



Macroscopic polarization: uncertainties

P↵ =
e('el,↵ + 'ion,↵)

2⇡⌦
R↵

• it is challenging to 
determine large 
polarization difference 
~1 C/m2

�P = P(0) �P(1) ± e

⌦
R

Solution:  λ0 ➭ λ1/2 ➭ λ1



Macroscopic polarization: GaN Born eff. charge

λ1



Berry phase: Useful resources 

• Sheikh J.  Ahmed et al. “BerryPI: A software for studying 
polarization of crystalline solids with WIEN2k density 
functional all-electron package”, Comp. Phys. Commun. 
184, 647 (2013).

• BerryPI home and tutorials:  
https://github.com/spichardo/BerryPI/wiki

• Raffaele Resta “Macroscopic polarization in crystalline 
dielectrics: the geometric phase approach” Rev. Mod. 
Phys. 66, 899 (1994)

• Raffaele Resta and David Vanderbilt “Theory of 
Polarization:  A Modern Approach” in Physics of 
Ferroelectrics: a Modern Perspective (Springer, 2007)

http://www.ifp.tuwien.ac.at/forschung/arbeitsgruppen/cms/software-download/wien2wannier/


Berry phase: Weyl point charge

[command line]$ berrypi -j -w -b 1:XX
Need case.klist with k-points on the Wilson loop

SOC
Wilson loop

                             Band range (occupied only)

Weyl point

Wilson loop



Effective band structure: Zone folding

Zone folding
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Effective band structure: Workflow

• Construct primitive unit cell
• Make supercell (supercell)
• Run SCF calculation

• Unfold band structure (fold2Bloch)

• Plot effective band structure (ubs_dots*.m)

• Create k-path (case.klist_band file)

• Compute wave functions (case.vector[so] file) for the 
selected k-path:
- x lapw1 [-p]
- x lapwso [-p] (in the case of spin-orbit coupling)

fold2Bloch



Effective band structure: (Hg,Cd)Te band structure evolution
5
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FIG. 5. Band order and symmetry labels for HgTe and CdTe compounds (a). These two compounds exhibit a band inversion (Γ6 ↔ Γ8) and,
thus, have different “topology”. As the composition Hg1−xCdxTe varies between two binary compounds, a topological band crossover occurs.
The crossover is accompanied by emergence of massless Kane fermions at the Γ-point (b). Regions of the band structure perturbed by disorder
are labeled with arrows. The disorder affects only the electronic states located 1−3 eV above and below the Fermi energy.

III-V ternary semiconductors, including GaAs1−xSbx alloy.
GaBi is a metal with an anomalous order of bands [27], which
is reminiscent of the better known α-Sn with a band inver-
sion or negative band gap caused by spin-orbit effects [28].
Thus, the electronic structures of GaAs and GaBi have dif-
ferent topology, which is not the case in GaAs-GaSb, for in-
stance. The electronic structure of GaAs1−xBix cannot evolve
“smoothly” in the range 0 < x < 1 and must undergo a topo-
logical phase transition. This transition is accompanied by a
gradual transformation of the host GaAs parabolic conduction
band to a graphene-like cone with increasing x; electrons ul-
timately become massless fermions as it will be shown later.
Verification of this prediction would require electron trans-
port measurements in GaAs1−xBix for a wide range of x. So
far, the successful incorporation of Bi in GaAs under 12%
has been reported [29]. The lattice mismatch of 12% between
GaAs and GaBi is one of the main factors that limits their sol-
ubility.

C. (HgCd)Te alloy

Hg1−xCdxTe (HCT) is an example of a material system
with the topological band inversion [30], which is similar
to GaAs1−xBix discussed in the preceding Sec. IIIB. The
arrangement of bands in binary HgTe and CdTe as well as
their symmetry are shown at Fig. 5(a). The conduction band
minimum and the valence band maximum of CdTe have Γ 6

and Γ8 symmetry, respectively. In HgTe, the order of bands
is inverted due to a strong spin-orbit interaction [31]. The
crossover between the Γ6 and Γ8 bands is inevitable in the
course of a gradual change in the composition of ternary
Hg1−xCdxTe alloy as illustrated by dashed lines in Fig. 5(a).
The prominent feature of HCT is the presence of massless
Kane fermions [32] at the crossover composition (Fig. 5b),
whose experimental observation was recently reported by Or-
lita et al. [33].
The evolution of the Hg1−xCdxTe band structure as a func-

tion of composition is shown in Fig. 6. The composition range
was chosen to cover the transition from a semimetal with a
negative band gap to an insulator. The negative gap grad-
ually shrinks with increasing the Cd content (Fig. 6a) until
three-fold degeneracy is established at a critical composition
(Fig. 6b). At this composition, the light hole and electron
masses vanish near Γ as it is evident from the conical shape of
their dispersion. Orlita et al. [33] stressed that Kane fermions
are not protected by symmetry, unlike Dirac fermions. The
emergence of Kane fermions corresponds to a critical chemi-
cal compositionxc that depends on extrinsic factors (e.g., tem-
perature, pressure).
The band structure calculations yield the critical cadmium

content of xc ≈ 0.23 vs. 0.15 . . .0.17 observed experimen-
tally [34]. The modest level of discrepancy is largely due to
success of the modified Becke and Johnson (mBJ) exchange
potential [35] in correcting the energy gap error introduced in
regular LDA (local density approximation) calculations. The
LDA-mBJ values of the band gap in binary CdTe and HgTe
are 1.56 and −0.25 eV, respectively, compared to their ex-
perimental values of 1.65 and −0.3 eV [34]. It is interesting
that LDA-mBJ accurately reproduces not only the energy gap
for insulators, but also performs well for semimetals. With-
out mBJ potential, the LDA results for the band gap in CdTe
and HgTe are 0.3 and −0.8 eV. The Kane fermions can still
be observed, but the critical concentration is heavily shifted
towards Cd-rich composition xc ≈ 0.8.
Further increase of the cadmium content beyond x c leads to

a narrow-gap semiconductor with a highly non-parabolic con-
duction band (compare Figs. 6c and 6d). Apparently, there
is no ambiguity in the Bloch character for all states near the
Fermi energy irrespective of the Hg1−xCdxTe composition
(Fig. 6). This result indicates that charge transport character-
istics of HCT do not degrade as a result of the alloy scattering
as dramatically as in dilute nitride semiconductors [36]. Our
results explain the previously established experimental facts
for HCT, such as the exceptional electron mobility exceeding
105 cm2V−1s−1 at low temperature [37] with its maximum
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UNFOLDING THE BAND STRUCTURE OF DISORDERED . . . PHYSICAL REVIEW B 90, 115202 (2014)

(a) (b)

〉〈
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(!6 ↔ !8) and, thus, have different “topology.” As the composition Hg1−xCdxTe varies between two binary compounds, a topological band
crossover occurs. The crossover takes place near xc ≈0.19 and is accompanied by emergence of massless Kane fermions at the ! point (b).
Regions of the band structure perturbed by disorder are labeled with arrows. The disorder affects only the electronic states located 1−3 eV
above and below the Fermi energy.

for instance. The electronic structure of GaAs1−xBix cannot
evolve “smoothly” in the range 0 < x < 1 and must undergo a
topological phase transition. This transition is accompanied
by a gradual transformation of the host GaAs parabolic
conduction band to a graphenelike cone with increasing x;
electrons ultimately become massless fermions as it will be
shown later. Verification of this prediction would require
electron transport measurements in GaAs1−xBix for a wide
range of x. So far, the successful incorporation of Bi in GaAs
under 12% has been reported [43]. The lattice mismatch of
12% between GaAs and GaBi is one of the main factors that
limits their solubility.

C. (HgCd)Te alloy

Hg1−xCdxTe (HCT) is an example of a material system
with the topological band inversion [44], which is similar
to GaAs1−xBix discussed in the preceding Sec. III B. The

arrangement of bands in binary HgTe and CdTe as well as
their symmetry are shown at Fig. 5(a). The conduction band
minimum and the valence band maximum of CdTe have !6
and !8 symmetries, respectively. In HgTe, the order of bands
is inverted due to a strong spin-orbit interaction [45]. The
crossover between the !6 and !8 bands is inevitable in the
course of a gradual change in the composition of ternary
Hg1−xCdxTe alloy as illustrated by dashed lines in Fig. 5(a).
The prominent feature of HCT is the presence of massless
Kane fermions [46] at the crossover composition [Fig. 5(b)],
whose experimental observation was recently reported by
Orlita et al. [47].

The evolution of the Hg1−xCdxTe band structure as a
function of composition is shown in Fig. 6. The composition
range was chosen to cover the transition from a semimetal with
a negative band gap to an insulator. The negative gap gradually
shrinks with increasing the Cd content [Fig. 6(a)] until
threefold degeneracy is established at a critical composition
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FIG. 6. (Color online) Evolution of the band structure in ternary (HgCd)Te alloy near the ! point as a function of the chemical composition:
Hg25Cd2Te27 (a), Hg22Cd5Te27 (b), Hg20Cd7Te27 (c), and Hg5Cd22Te27 (d). The transition from a semimetal (a) to an insulator (c),(d) occurs
by passing through a Kane point (b). The nearly linear dispersion E ∝ |k|, which is characteristic of the Kane point, persists in the conduction
band after opening of the band gap (c).
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topological phase transition. This transition is accompanied
by a gradual transformation of the host GaAs parabolic
conduction band to a graphenelike cone with increasing x;
electrons ultimately become massless fermions as it will be
shown later. Verification of this prediction would require
electron transport measurements in GaAs1−xBix for a wide
range of x. So far, the successful incorporation of Bi in GaAs
under 12% has been reported [43]. The lattice mismatch of
12% between GaAs and GaBi is one of the main factors that
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is inverted due to a strong spin-orbit interaction [45]. The
crossover between the !6 and !8 bands is inevitable in the
course of a gradual change in the composition of ternary
Hg1−xCdxTe alloy as illustrated by dashed lines in Fig. 5(a).
The prominent feature of HCT is the presence of massless
Kane fermions [46] at the crossover composition [Fig. 5(b)],
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The evolution of the Hg1−xCdxTe band structure as a
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for instance. The electronic structure of GaAs1−xBix cannot
evolve “smoothly” in the range 0 < x < 1 and must undergo a
topological phase transition. This transition is accompanied
by a gradual transformation of the host GaAs parabolic
conduction band to a graphenelike cone with increasing x;
electrons ultimately become massless fermions as it will be
shown later. Verification of this prediction would require
electron transport measurements in GaAs1−xBix for a wide
range of x. So far, the successful incorporation of Bi in GaAs
under 12% has been reported [43]. The lattice mismatch of
12% between GaAs and GaBi is one of the main factors that
limits their solubility.

C. (HgCd)Te alloy

Hg1−xCdxTe (HCT) is an example of a material system
with the topological band inversion [44], which is similar
to GaAs1−xBix discussed in the preceding Sec. III B. The

arrangement of bands in binary HgTe and CdTe as well as
their symmetry are shown at Fig. 5(a). The conduction band
minimum and the valence band maximum of CdTe have !6
and !8 symmetries, respectively. In HgTe, the order of bands
is inverted due to a strong spin-orbit interaction [45]. The
crossover between the !6 and !8 bands is inevitable in the
course of a gradual change in the composition of ternary
Hg1−xCdxTe alloy as illustrated by dashed lines in Fig. 5(a).
The prominent feature of HCT is the presence of massless
Kane fermions [46] at the crossover composition [Fig. 5(b)],
whose experimental observation was recently reported by
Orlita et al. [47].

The evolution of the Hg1−xCdxTe band structure as a
function of composition is shown in Fig. 6. The composition
range was chosen to cover the transition from a semimetal with
a negative band gap to an insulator. The negative gap gradually
shrinks with increasing the Cd content [Fig. 6(a)] until
threefold degeneracy is established at a critical composition
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FIG. 6. (Color online) Evolution of the band structure in ternary (HgCd)Te alloy near the ! point as a function of the chemical composition:
Hg25Cd2Te27 (a), Hg22Cd5Te27 (b), Hg20Cd7Te27 (c), and Hg5Cd22Te27 (d). The transition from a semimetal (a) to an insulator (c),(d) occurs
by passing through a Kane point (b). The nearly linear dispersion E ∝ |k|, which is characteristic of the Kane point, persists in the conduction
band after opening of the band gap (c).
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FIG. 5. (Color online) Band order and symmetry labels for HgTe and CdTe compounds (a). These two compounds exhibit a band inversion
(!6 ↔ !8) and, thus, have different “topology.” As the composition Hg1−xCdxTe varies between two binary compounds, a topological band
crossover occurs. The crossover takes place near xc ≈0.19 and is accompanied by emergence of massless Kane fermions at the ! point (b).
Regions of the band structure perturbed by disorder are labeled with arrows. The disorder affects only the electronic states located 1−3 eV
above and below the Fermi energy.
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Effective band structure: Useful resources 

• V. Popescu and A. Zunger, Phys. Rev. Lett. 104, 236403 
(2010).

• O. Rubel, A. Bokhanchuk, S. J. Ahmed, and E. Assmann 
“Unfolding the band structure of disordered solids: 
from bound states to high-mobility Kane fermions” 
Phys. Rev. B 90, 115202 (2014)

• fold2Bloch home and tutorials:  
https://github.com/rubel75/fold2Bloch

https://github.com/rubel75/fold2Bloch

