Wannier functions, macroscopic polarization (Berry phase) and related properties

Oleg Rubel

Department of Materials Science and Engineering

Wannier functions

Bloch vs Wannier functions

Ambiguity of Wannier functions

Bloch functions (more precisely):

 $\psi_{n\mathbf{k}}(\mathbf{r}) = u_{n\mathbf{k}}(\mathbf{r}) \ e^{i\mathbf{k}\cdot\mathbf{r}} \ e^{i\phi_{n\mathbf{k}}}$

gauge freedom (does not change the physical description of the system)

General transformation of Bloch functions into Wannier functions:

$$|\mathbf{R}n\rangle = \frac{V}{(2\pi)^3} \int_{\mathrm{BZ}} d\mathbf{k} e^{-i\mathbf{k}\cdot\mathbf{R}} \sum_{m=1}^J U_{mn}^{(\mathbf{k})} |\psi_{m\mathbf{k}}\rangle.$$

Bloch-like orbitals The unitary matrix $U_{mn}(k)$ mixes bands (needed for degenerate bands)

Max. localized Wannier functions (MLWF)

Manipulations with coefficients of the unitary matrix $U_{mn}(k)$ allow to construct Bloch-like orbitals that are a localized in real space.

Max. localized Wannier functions (MLWF)

Manipulations with coefficients of the unitary matrix $U_{mn}(k)$ allow to construct Bloch-like orbitals that are a localized in real space.

$$\Omega = \sum_{n} [\langle \mathbf{0}n | r^2 | \mathbf{0}n \rangle - \langle \mathbf{0}n | \mathbf{r} | \mathbf{0}n \rangle^2] = \sum_{n} [\langle r^2 \rangle_n - \bar{\mathbf{r}}_n^2]$$

Wannier functions matrix elements

 $\langle 0n | {f r} | 0n
angle$ – position of the Wannier center

$$|\mathbf{R}n\rangle = \frac{V}{(2\pi)^3} \int_{\mathrm{BZ}} d\mathbf{k} e^{-i\mathbf{k}\cdot\mathbf{R}} |\psi_{n\mathbf{k}}\rangle.$$

$$\psi_{n\mathbf{k}}(\mathbf{r}) = u_{n\mathbf{k}}(\mathbf{r})e^{i\mathbf{k}\cdot\mathbf{r}}$$

$$\mathbf{\hat{r}}=i
abla_{\mathbf{k}}$$
 -- position operator

$$\langle 0n|\mathbf{r}|0n\rangle = i \, \frac{V}{(2\pi)^3} \int d\mathbf{k} \, \langle u_{n\mathbf{k}}|\nabla_{\mathbf{k}}|u_{n\mathbf{k}}\rangle$$

related to Berry phase, electronic polarization

Discretization:

$$d\varphi_n = -i \langle u_{n\mathbf{k}} | \nabla_{\mathbf{k}} | u_{n\mathbf{k}} \rangle \cdot d\mathbf{k} = -i \ln \langle u_{n\mathbf{k}} | u_{n(\mathbf{k}+d\mathbf{k})} \rangle$$
$$\mathbb{S}_{mn}(\mathbf{k}_j, \mathbf{k}_{j+1}) = \langle u_{m\mathbf{k}_j} | u_{n\mathbf{k}_{j+1}} \rangle \quad \text{-- matrix elements}$$

Initial projections

- includes bonding and antibonding states
- building effective hamiltonian

- includes valence states
- charge transfer and polarization

Workflow

- Regular SCF calculation
- Band structure plot
- Initialize wien2wannier (init_w2w):
 - select bands, init. projections, # of WF (case.inwf file)
 - projected band structure "bands_plot_project" (case.win file)
 - additional options related to entanglement (case.win file)
- Compute overlap matrix element S_{mn} and projections $M_{mn}(x w^2w)$
- Perform Wannierization (x wannier90):
 - position of Wannier centers and spreads (case.wout file)
 - Wannier hamiltonian (case_hr.dat file)
- Initialize **plotting**, select plotting range, r-mesh (write_inwplot)
- Evaluate WF on the r-mesh selected (x wplot)
- Convert the output of wplot into xcrysden format for plotting (wplot2xsf)
- Plot WF

Wannier functions as a tight-binding basis

Band structure

- + original Wien2k band structure
- Band structure computed from Wannier hamiltonian

Disentanglement

- + original Wien2k band structure
- Band structure computed from Wannier hamiltonian

Souza et al.: PRB 65, 035109 (2001)

Relation to polarization

Bond-centered WF

Si

symmetric (non-polar) non-symmetric (polar)

GaAs

$$\mathbf{P} = \frac{e}{V} \left(\sum_{\tau} Z_{\tau} \mathbf{r}_{\tau} - \sum_{n} \mathbf{r}_{n} \right)$$

Ionic part Electronic part

King-Smith & Vanderbilt, Phys. Rev. B 47, 1651 (1993)

 Z_{As}

Useful resources

- Jan Kuneš et al. "Wien2wannier: From linearized augmented plane waves to maximally localized Wannier functions", Comp. Phys. Commun. 181, 1888 (2010).
- Wien2Wannier home and user guide: <u>http://www.ifp.tuwien.ac.at/forschung/arbeitsgruppen/</u> <u>cms/software-download/wien2wannier/</u>
- Wannier90 home and user guide: <u>http://www.wannier.org/</u>
- Nicola Marzari et al. "Maximally localized Wannier functions: Theory and applications", Rev. Mod. Phys. 84, 1419 (2012)

Macroscopic polarization

Material properties related to polarization

Piezo- and Ferroelectricity

Effective charge

Dielectric screening

Pyroelectricity

What is polarization?

We will now assume that in each atom there are charges q separated by a distance δ , so that $q\delta$ is the dipole moment per atom. (We use δ because we are already using d for the plate separation.) If there are N atoms per unit volume, there will be a *dipole moment per unit volume* equal to $Nq\delta$. This dipole moment per unit volume will be represented by a vector, P. Needless to say, it is in the direction of the individual dipole moments, i.e., in the direction of the charge

Polarization for periodic solids is undefined

What is polarization?

We will now assume that in each atom there are charges q separated by a distance δ , so that $q\delta$ is the dipole moment per atom. (We use δ because we are already using d for the plate separation.) If there are N atoms per unit volume, there will be a *dipole moment per unit volume* equal to $Nq\delta$. This dipole moment per unit volume will be represented by a vector, P. Needless to say, it is in the direction of the individual dipole moments, i.e., in the direction of the charge

-2q +q P +q +q

Polarization for periodic solids is undefined

Modern theory of polarization

Pioneered by King-Smith, David Vanderbilt and Raffaele Resta

All measurable physical quantities are related to the **change** in polarization!

$$\Delta \mathbf{P} = \mathbf{P}^{(0)} - \mathbf{P}^{(1)}$$

Components of polarization

$$-\mathbf{P}_{\rm el} = \Omega^{-1} \int d\mathbf{r} \, \mathbf{r} \rho(\mathbf{r}) = \Omega^{-1} \sum_{n}^{\rm occ.} \langle \psi_n | \mathbf{r} | \psi_n \rangle \quad \equiv \frac{2ei}{(2\pi)^3} \sum_{n}^{\rm occ.} \int_{\rm BZ} d\mathbf{k} \, \langle u_{n\mathbf{k}} | \nabla_{\mathbf{k}} | u_{n\mathbf{k}} \rangle$$

King-Smith and David Vanderbilt, Phys. Rev. B 47, 1651 (1993)

$$\mathrm{d}\varphi_n = -i\langle u_{n\mathbf{k}} | \nabla_{\mathbf{k}} | u_{n\mathbf{k}} \rangle \cdot \mathrm{d}\mathbf{k} = -i\ln\langle u_{n\mathbf{k}} | u_{n(\mathbf{k}+\mathrm{d}\mathbf{k})} \rangle$$

$$S_{mn}(\mathbf{k}_{j}, \mathbf{k}_{j+1}) = \langle u_{m\mathbf{k}_{j}} | u_{n\mathbf{k}_{j+1}} \rangle \quad \text{WIEN2WANNIER}$$

$$\varphi(\mathbf{k}_{\parallel}) = 2 \operatorname{Im} \left[\ln \prod_{j=0}^{J-1} \det S_{M \times M}(\mathbf{k}_{j}, \mathbf{k}_{j+1}) \right]$$

$$\varphi_{el,\alpha} = S_{\perp}^{-1} \int_{S_{\perp}} dS_{\perp} \varphi(\mathbf{k}_{\parallel})$$

$$P_{\alpha} = \frac{e(\varphi_{el,\alpha} + \varphi_{ion,\alpha})}{2\pi\Omega} R_{\alpha}$$

King-Smith and David Vanderbilt, Phys. Rev. B 47, 1651 (1993)

BerryPl

Comput. Phys. Commun. **184**, 647 (2013)

Typical workflow

- structure file <u>must</u> preserve the symmetry
- begin with the lowest symmetry (λ_1) case
- copy case λ_1 to case λ_0
- edit structure file for case λ_0
- do <u>not</u> initialize calculation (init_lapw)
- update density (x dstart)
- run SCF cycle (run[sp]_lapw [-so -orb])
- run BerryPI

Uncertainties

$$P_{\alpha} = \frac{e(\varphi_{\mathrm{el},\alpha} + \varphi_{\mathrm{ion},\alpha})}{2\pi\Omega} R_{\alpha}$$

$$\Delta \mathbf{P} = \mathbf{P}^{(0)} - \mathbf{P}^{(1)} \pm \frac{e}{\Omega} \mathbf{R}$$

 it is challenging to determine large polarization difference ~I C/m²

Solution: $\lambda_0 \hookrightarrow \lambda_{1/2} \hookrightarrow \lambda_1$

Demonstration: Effective charge of GaN

$$Z_{s,ij}^* = \frac{\Omega}{e} \frac{\Delta P_i}{\Delta r_{s,j}}$$

$$\varphi = \varphi_{\rm el} + \varphi_{\rm ion}$$

General definition

 $\Delta \varphi = \varphi(\text{perturbed}) - \varphi(\text{unperturbed})$ $Z_{s,ii}^* = \frac{\Delta \varphi_i}{2\pi \Delta u_{s,i}}$ "Shortcut" (i=j, no volume change)

volume change)

Gan 2º calculation 80 Pel (0) = -0.1538 \$\overline(0) = -1.50\$ Pel(1) = -0.2509 Pion(1) = -1.4451 $\Phi_{tot} \neq (0) = -1.6618$ $\Phi_{++}(1) = -1.6960$ $\Delta \Phi (0 \rightarrow 1) = -1.6960 + 1.6618$ = -0.0342 $\Delta U = 0.001 - 0 = 0.001$ ΔΦ 2* = 2V. SU. H# of atoms moved = -2.72

Reality check

GaN: effective charge, dielectric constants - Springer link.springer.com/content/pdf/10.1007%2F978-3-642-14148-5_230.pdf by D Strauch - 2011 - Related articles gallium nitride (GaN) property: effective charge, dielectric constants (lattice properties). Born effective charge (wurtzite structure). Physical. Property. Numerical. You've visited this page 2 times. Last visit: 04/06/16

GaN: effective charge, dielectric constants

1	substance:	gallium nitride (GaN)
1	property:	effective charge, dielectric constants (lattice properties)

Born effective charge (wurtzite structure)

Physical Property	Numerical Values	Remarks	Ref.
Z*	2.73(3)	from LO-TO splitting, Raman scattering from bulk GaN	01G
	2.51	ab initio DFT(LDA) calculation	01Z
	2.67	ab initio DFT(GGA) calculation	
Z_{xx}^*	2.60	ab initio DFT(LDA) calculation	02W
Z22*	2.74		
$Z_{B,xx}$ *	1.14	$Z_{\mathrm{B},ij} * = Z_{ii} * / \sqrt{\varepsilon_{\infty,ii}}$	
Z _{B,22} *	1.18		
Z_{xx}^*	2.51	ab-initio DFT(LDA) calculation	06S
Z ₂₂ *	2.75		

Useful resources

- Sheikh J. Ahmed et al. "BerryPI: A software for studying polarization of crystalline solids with WIEN2k density functional all-electron package", Comp. Phys. Commun. 184, 647 (2013).
- BerryPI home and tutorials: <u>https://github.com/spichardo/BerryPI/wiki</u>
- Raffaele Resta "Macroscopic polarization in crystalline dielectrics: the geometric phase approach" Rev. Mod. Phys. 66, 899 (1994)
- Raffaele Resta and David Vanderbilt "Theory of Polarization: A Modern Approach" in *Physics of Ferroelectrics: a Modern Perspective* (Springer, 2007)

Acknowledgement

BerryPI contributors:

- Jon Kivinen
- Sheikh J.Ahmed
- Ben Zaporzhan
- Sam Pichardo
- Laura Curiel
- David Hassan
- Victor Xiao

- Elias Assmann
- Jan Kunes
- Philipp Wissgott

