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In WIEN2k, several functions f(r) are expanded in spherical harmonics inside the spheres

and in Fourier series in the interstitial region. These functions are listed below along with

the name of the file where it is written and the WIEN2k module generating it.

• Valence electron density ρvalence (case.clmval, lapw2)

• Core electron density ρcore (case.clmcor, lcore)

• Total electron density ρ (case.clmsum, mixer)

• Effective Kohn-Sham potential vKS
eff (case.vsp/vns, lapw0)

Remark: The Fourier expansion of vKS
eff contains the step function

• Coulomb potential vCoul (case.vcoul, lapw0, for plotting)

• Exchange-correlation vxc (case.r2v, lapw0, for plotting)

• Part of the kinetic-energy density (case.vresp/val/cor/sum, for MGGA functionals)

I. EXPANSION INSIDE THE SPHERES

A. Definition of the complex spherical harmonics

In WIEN2k, the complex spherical harmonics Yℓm are defined with the Condon-Shortley

convention:

Yℓm(θ, ϕ) = (−1)m

√

(2ℓ+ 1)

4π

(ℓ−m)!

(ℓ+m)!
Pℓm(cos θ)e

imϕ (1)

where θ (∈ [0, π]) and φ (∈ [0, 2π)) are the polar and azimuthal angles of the spherical

coordinate system and Pℓm are the associated Legendre polynomials. The Yℓm are calculated

by the subroutine ylm.f in WIEN2k.
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B. Non-cubic case

If the point group of an atom is non-cubic, i.e., negative atom index in case.struct, then

a function f(r) (density, potential, etc.) is expanded as

f(r) =
∑

ℓmp

fℓmp(r)Zℓmp(θ, ϕ) (2)

where Zℓmp are real spherical harmonics1:

Zℓ0(θ, ϕ) = Yℓ0(θ, ϕ) (3)

Zℓm+(θ, ϕ) =
(−1)m√

2
(Yℓm(θ, ϕ) + Y ∗

ℓm(θ, ϕ)) (4)

Zℓm−(θ, ϕ) =
(−1)m

i
√
2

(Yℓm(θ, ϕ)− Y ∗

ℓm(θ, ϕ)) (5)

and fℓmp are the radial functions which are written in the files case.clmsum, etc. (see Sec.

4.2 of the user’s guide for details). The list of non-zero (ℓ,m, p)-terms in Eq. (2) (shown in

case.in2) depends on the point group symmetry (indicated in case.outputs). By default,

the sum in Eq. (2) is truncated at ℓmax = 6 and Table 7.51 in the user’s guide provides

the list of all (ℓ,m, p) in case the user wants to increase ℓmax to a larger value by adding

additional terms in case.in2.

C. Cubic case

In the case of an atom with a cubic point group symmetry (positive atom index in

case.struct), the expansion of a function f(r) is given by

f(r) =
∑

ℓj

fℓj(r)Kℓj(θ, ϕ) (6)

where Kℓj are the cubic harmonics1 which are linear combinations of real spherical harmon-

ics,

Kℓj(θ, ϕ) =
∑

mp

kℓjmpZℓmp(θ, ϕ) (7)

and the radial functions fℓj are also linear combinations of the fℓmp radial functions:

fℓj(r) =
∑

mp

kℓjmpfℓmp(r) (8)
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TABLE I. Coefficients kℓjmp in Eqs. (7) and (8).

ℓj\mp 0 2+ 2− 4+ 4− 6+ 6− 8+ 8− 10+

0 1 1

3 1 1

4 1 1
2

√

7
3

1
2

√

5
3

6 1 1
2

√

1
2 −1

2

√

7
2

6 2 1
4

√
11 −1

4

√
5

7 1 1
2

√

13
6

1
2

√

11
6

8 1 1
8

√
33 1

4

√

7
3

1
8

√

65
3

9 1 1
4

√
3 −1

4

√
13

9 2 1
2

√

17
6 −1

2

√

7
6

10 1 1
8

√

65
6 −1

4

√

11
2 −1

8

√

187
6

10 2 1
8

√

247
6

1
16

√

19
3 − 1

16

√
85

The coefficients kℓjmp in Eqs. (7) and (8) are given in Table IC. Table 7.50 of the user’s

guide lists the non-zero (ℓ,m, p)-terms up to ℓ = 10. Note that these are the radial functions

fℓmp (and not the fℓj) that are written in case.clmsum, etc.

In the WIEN2k source code, the coefficients kℓjmp are stored in the array c kub and the

subroutine cbcomb.f makes the transformation beteween the fℓj and fℓmp functions.

II. EXPANSION IN THE INTERSTITIAL

A. Fourier series

In the interstitial region, a function f is expanded in Fourier series

f(r) =
∞
∑

n=1

fGn
eiGnr (9)

where fGn
are the Fourier coefficients

fGn
=

1

Vcell

∫

cell

f(r)e−iGnrd3r (10)

3



In practice, Eqs. (9) and (10) are calculated using fast Fourier transform (FFT):

f(rm) =

NG
∑

n=1

fGn
eiGnrm (11)

fGn
=

1

VcellNFFT

NFFT
∑

m=1

f(rm)e
−iGnrm (12)

where NG is the number of reciprocal lattice vectors such that |Gn| < Gmax (specified

in case.in2) and NFFT, which depends on Gmax and is multiplied by the FFT-factor in

case.in0, is the size of the FFT arrays. In the WIEN2k source code, the FFTs are done

with the statement call c3fft.

B. Symmetrization of plane-waves

Symmetry allows to reduce the number of stored Fourier coefficients by expanding the

function f in symmetrized plane-waves:

f(r) =

NG
∑

n=1

fGn
eiGnr =

Ns
∑

s=1

fsΦs(r) (13)

where Φs are the Ns (6 NG) symmetrized plane-waves (stars) that are constructed by

applying all Nop symmetry operations (Ro, to) (those in case.struct) to a plane-wave:

Φs(r) =
1

Nop

Nop
∑

o=1

eiGs,1(Ror+to) =
1

ms

ms
∑

n=1

ms

Nop

Nop/ms
∑

o=1

eiGs,1tn,oeiGs,nr (14)

The coefficients fs of the Stars are

fs =
ms
∑

n=1

fGs,n

ms

Nop

Nop/ms
∑

o=1

e−iGs,1tn,o (15)

Note that Eqs. (14) and (15) differ from those in Ref. 2 due to different ways the symmetry

operations are applied. In the files case.clmsum, etc., Ns is written next to “NUMBER OF

PW”. In the WIEN2k source code, the symmetrization of the plane-waves and coefficients

is handled by the subroutines stern.f, getfft.f and setfft.f.
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