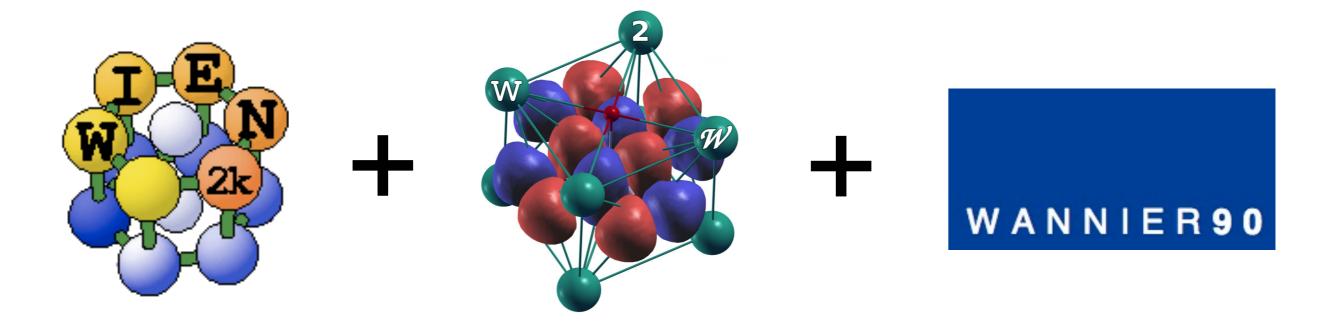
Wannier functions,
macroscopic polarization
(Berry phase) and related
properties
Oleg Rubel

Thunder Bay Regional Research Institute

Lakehead

Outline

- Wannier functions with Wien2k (wien2wannier)
- Modern theory of polarization (Berry phase)
- Tutorials overview

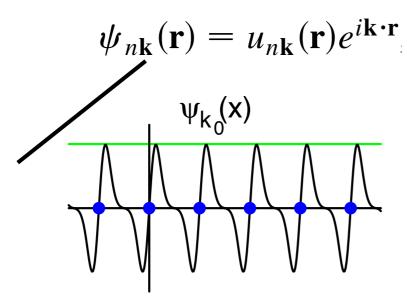


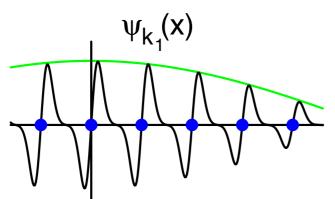
Bloch vs Wannier functions

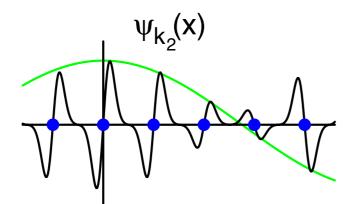
Bloch functions

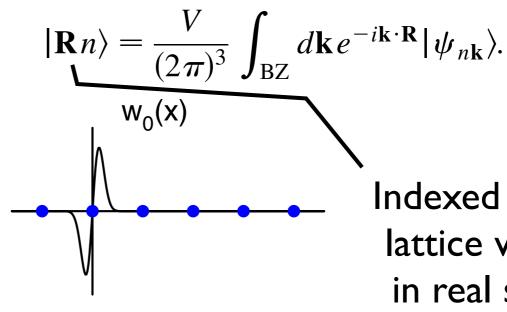
Wannier functions

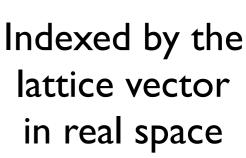
Indexed by the wave vector

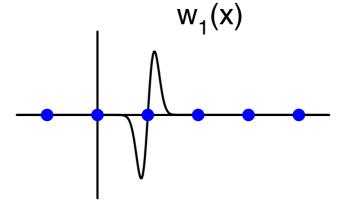


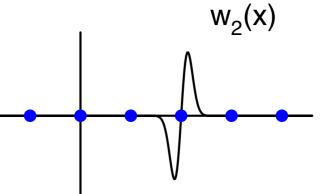












Both sets: complete and orthonormal

Marzari et al.: Rev. Mod. Phys. (2012)

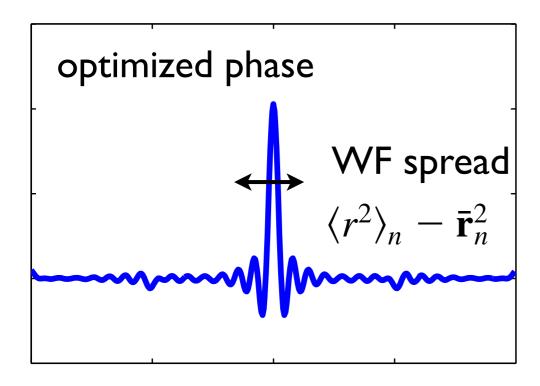
Max. localized Wannier functions (MLWF)

Bloch functions (more precisely):

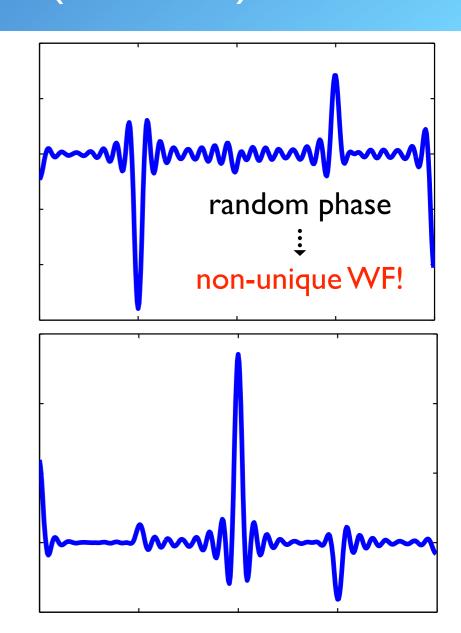
$$\psi_{n\mathbf{k}}(\mathbf{r}) = u_{n\mathbf{k}}(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}} e^{i\phi_{n\mathbf{k}}}$$

gauge freedom

(does not change the physical description of the system)



$$\Omega = \sum_{n} [\langle \mathbf{0}n|r^{2}|\mathbf{0}n\rangle - \langle \mathbf{0}n|\mathbf{r}|\mathbf{0}n\rangle^{2}] = \sum_{n} [\langle r^{2}\rangle_{n} - \bar{\mathbf{r}}_{n}^{2}]$$



Wannier functions matrix elements

 $\langle 0n|\mathbf{r}|0n\rangle$ – position of the Wannier center

$$|\mathbf{R}n\rangle = \frac{V}{(2\pi)^3} \int_{\mathrm{BZ}} d\mathbf{k} e^{-i\mathbf{k}\cdot\mathbf{R}} |\psi_{n\mathbf{k}}\rangle.$$

$$\psi_{n\mathbf{k}}(\mathbf{r}) = u_{n\mathbf{k}}(\mathbf{r})e^{i\mathbf{k}\cdot\mathbf{r}}$$

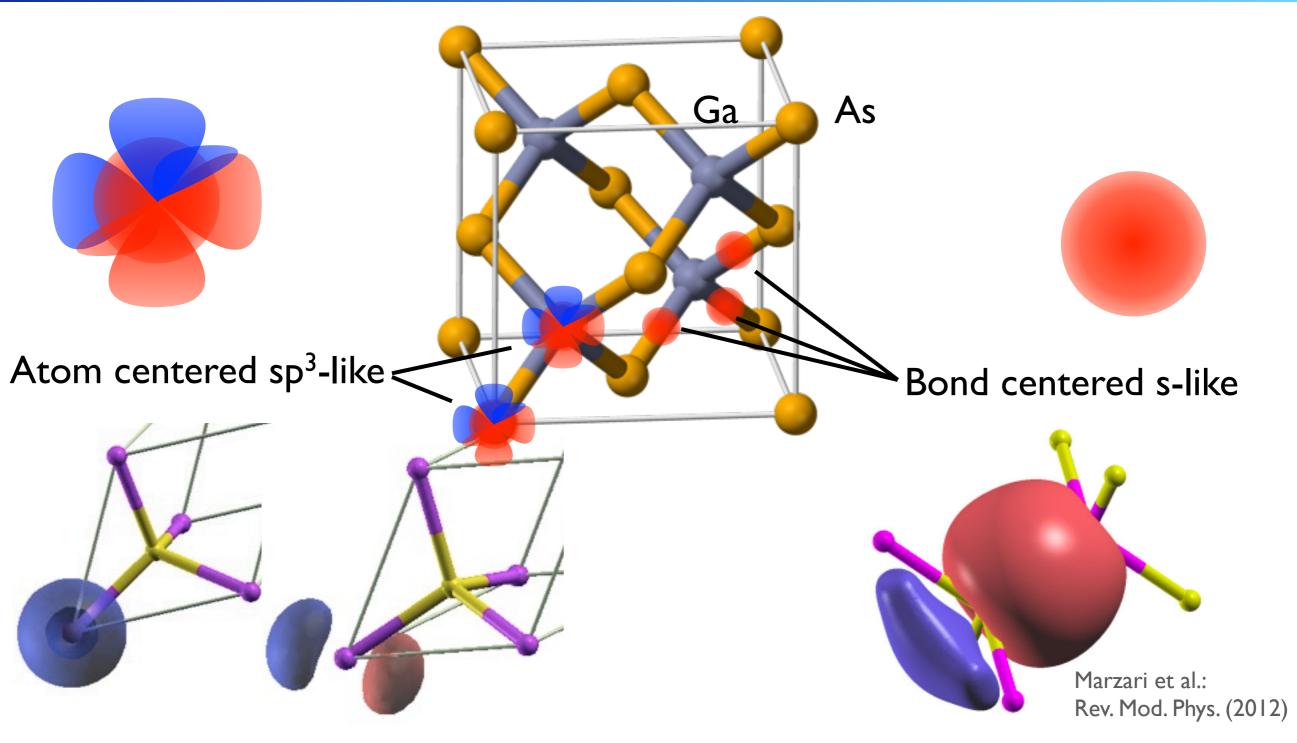
$$\hat{\mathbf{r}} = i \nabla_{\mathbf{k}}$$
 -- position operator

$$\langle 0n|\mathbf{r}|0n\rangle = i\,\frac{V}{(2\pi)^3} \int d\mathbf{k}\,\langle u_{n\mathbf{k}}|\nabla_{\mathbf{k}}|u_{n\mathbf{k}}\rangle$$

related to Berry phase, electronic polarization

$$\langle 0n|\mathbf{r}^2|0n\rangle = -\frac{V}{(2\pi)^3} \int d\mathbf{k} \langle u_{n\mathbf{k}}|\nabla_{\mathbf{k}}^2|u_{n\mathbf{k}}\rangle$$

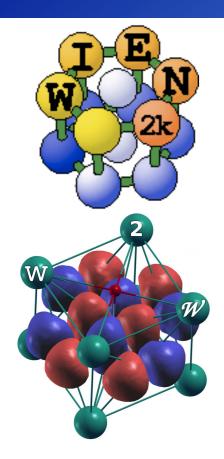
Initial projections

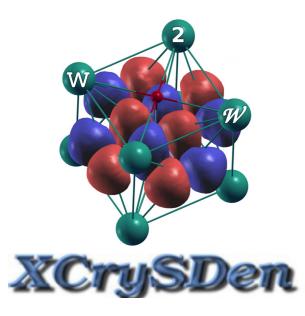


- includes bonding and anibonding states
- building effective hamiltonian

- includes valence states
- charge transfer and polarization

Workflow

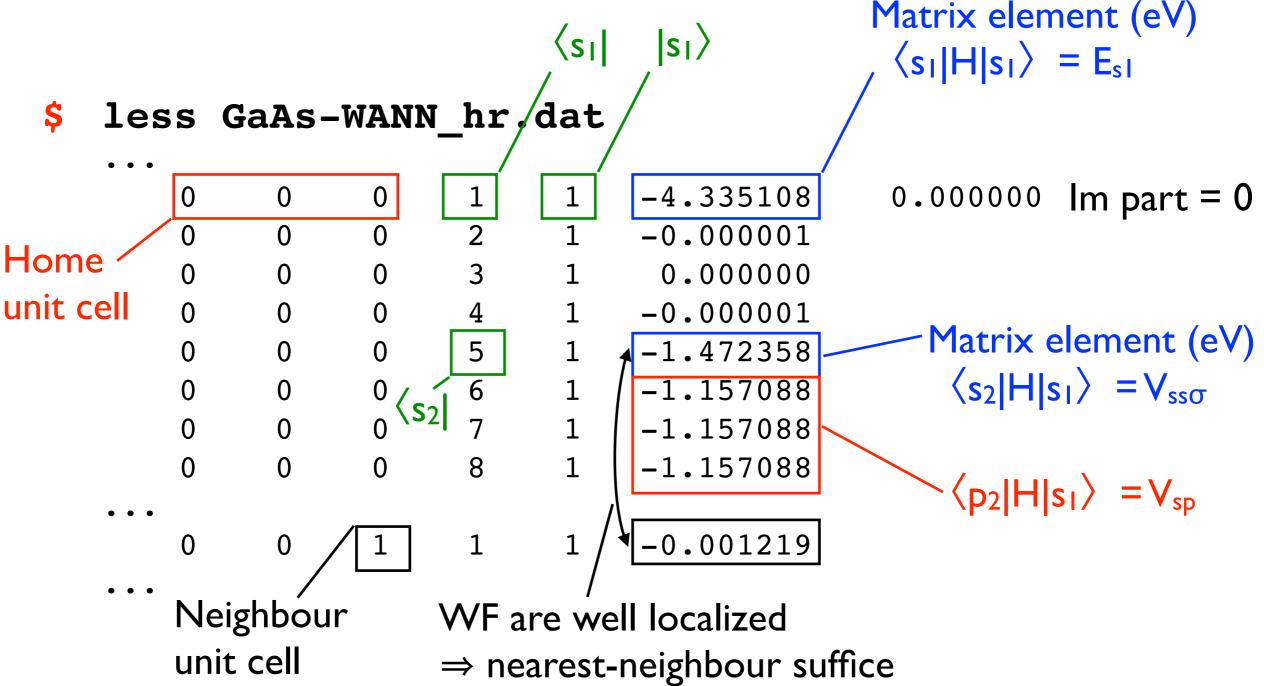




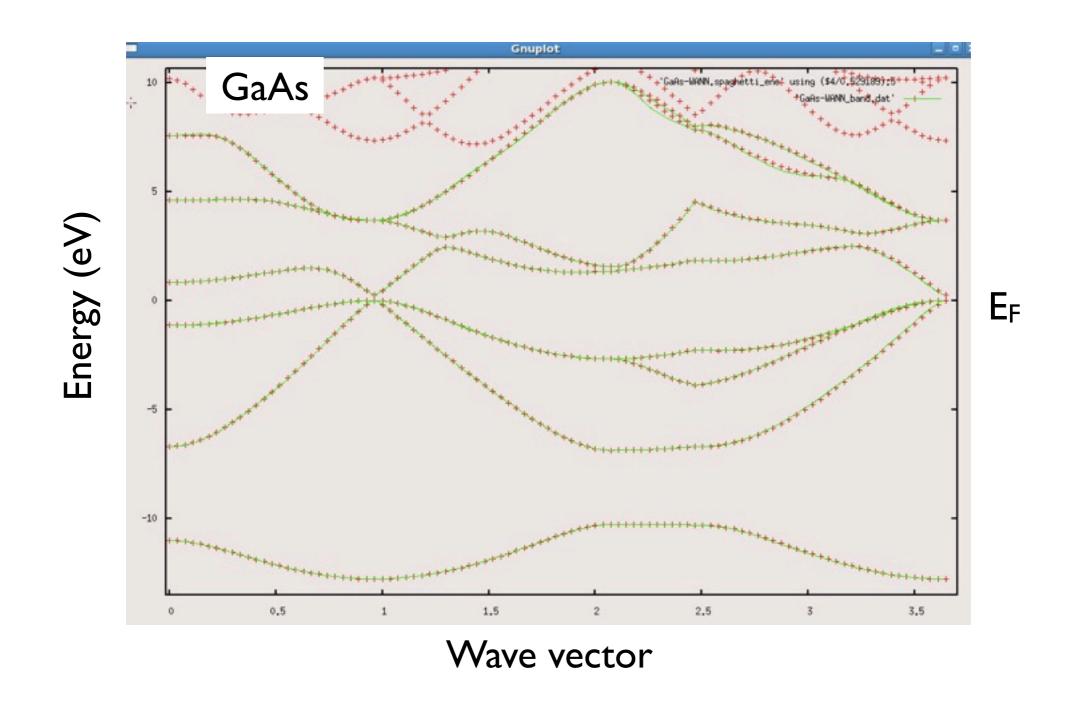
- Regular SCF calculation
- Band structure plot
- Initialize wien2wannier (init w2w):
 - select bands, init. projections, # of WF (case.inwf file)
 - projected band structure "bands_plot_project" (case.win file)
 - additional options related to entanglement (case.win file)
- Compute overlap matrix element M_{mn} , A_{mn} (x w2w)
- Perform Wannierization (x wannier90):
 - position of **Wannier centers** and spreads (case.wout file)
 - Wannier hamiltonian (case_hr.dat file)
- Initialize **plotting**, select plotting range, r-mesh (write_inwplot)
- Evaluate WF on the r-mesh selected (x wplot)
- Convert the output of wplot into xcrysden format for plotting (wplot2xsf)
- Plot WF

Wannier functions as a tight-binding basis

(Atom-centered WF)



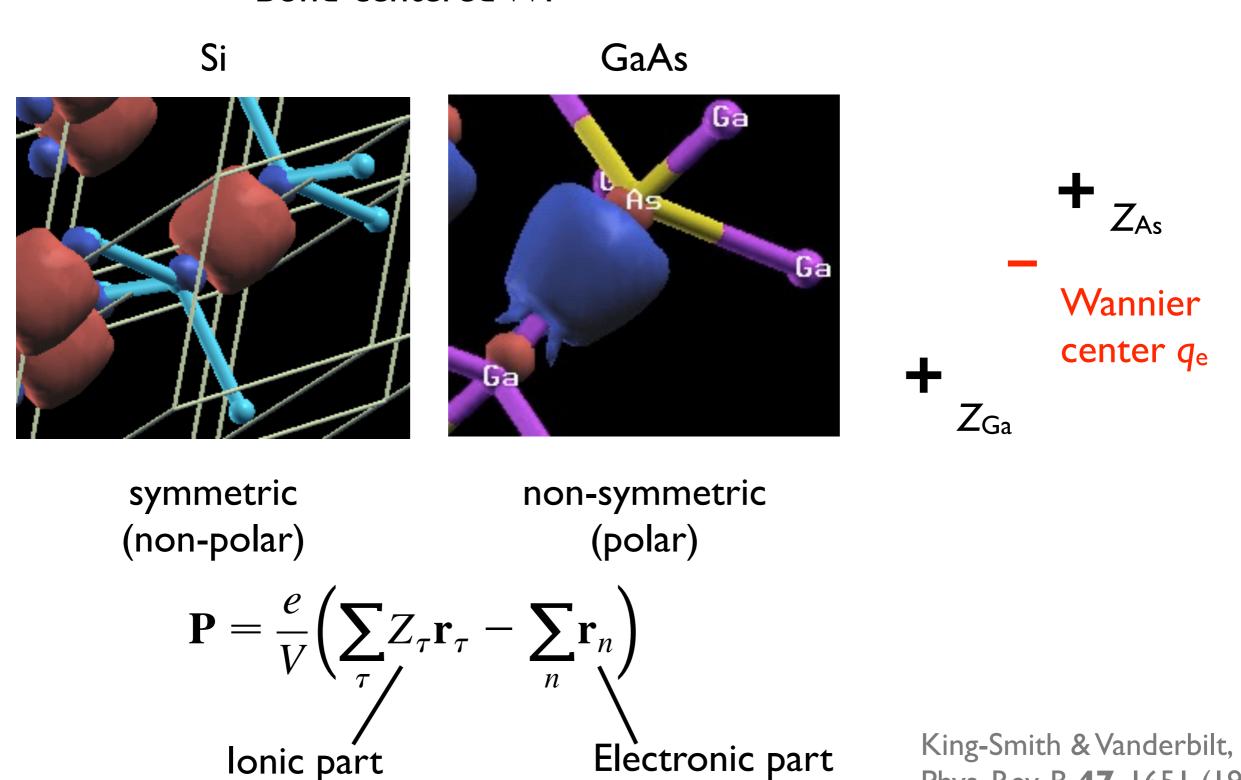
Band structure, entanglement



- + original Wien2k band structure
- Band structure computed from Wannier hamiltonian

Relation to polarization

Bond-centered WF



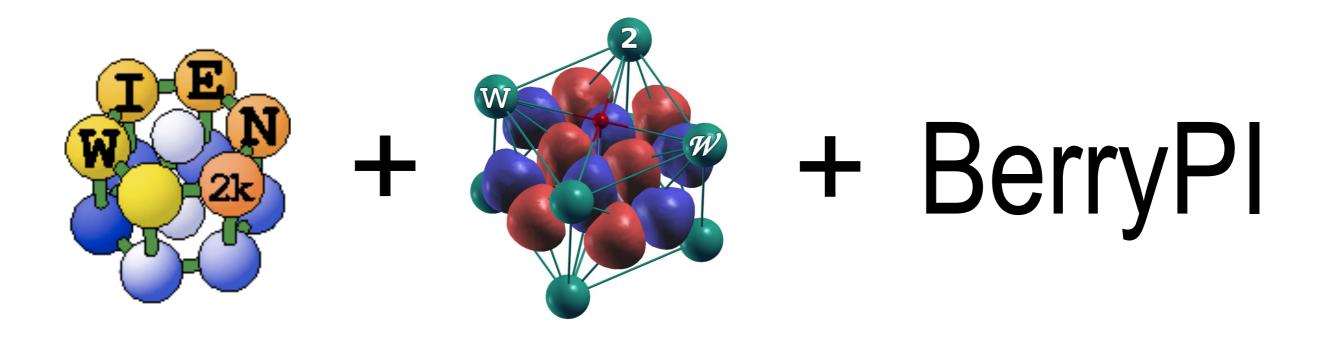
Phys. Rev. B 47, 1651 (1993)

Friday, 4 July, 14

Useful resources

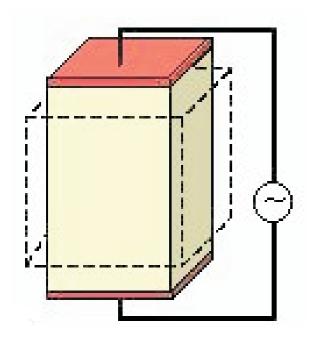
- Jan Kuneš et al. "Wien2wannier: From linearized augmented plane waves to maximally localized Wannier functions", Comp. Phys. Commun. 181, 1888 (2010).
- Wien2Wannier home and user guide: <u>http://www.ifp.tuwien.ac.at/forschung/arbeitsgruppen/cms/software-download/wien2wannier/</u>
- Wannier90 home and user guide: http://www.wannier.org/
- Nicola Marzari et al. "Maximally localized Wannier functions: Theory and applications", Rev. Mod. Phys. 84, 1419 (2012)

Macroscopic polarization

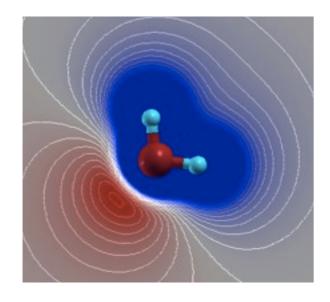


Material properties related to polarization

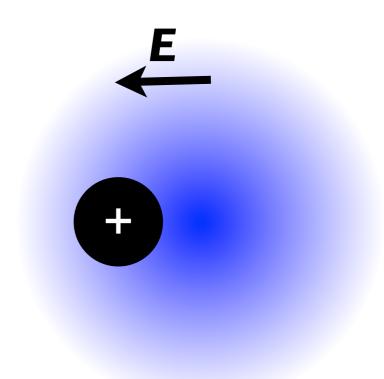
Piezo- and Ferroelectricity



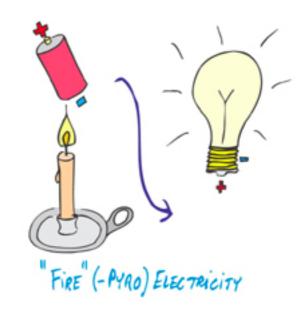
Effective charge



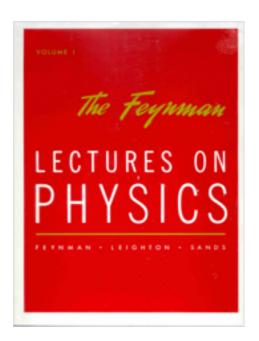
Dielectric screening



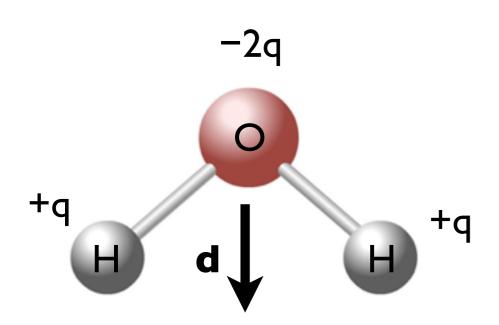
Pyroelectricity

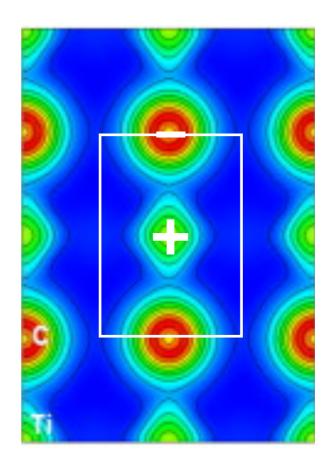


What is polarization?



We will now assume that in each atom there are charges q separated by a distance δ , so that $q\delta$ is the dipole moment per atom. (We use δ because we are already using d for the plate separation.) If there are N atoms per unit volume, there will be a dipole moment per unit volume equal to $Nq\delta$. This dipole moment per unit volume will be represented by a vector, P. Needless to say, it is in the direction of the individual dipole moments, i.e., in the direction of the charge





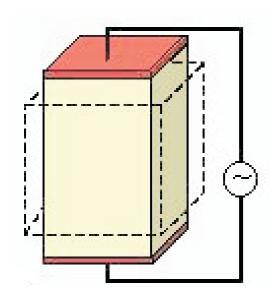
Polarization for periodic solids is undefined

Modern theory of polarization

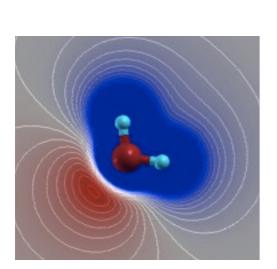
Pioneered by King-Smith, David Vanderbilt and Raffaele Resta

All measurable physical quantities are related to the **change** in polarization!

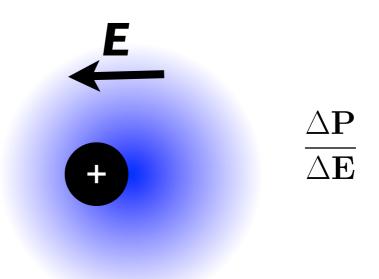
$$\Delta \mathbf{P} = \mathbf{P}^{(0)} - \mathbf{P}^{(1)}$$

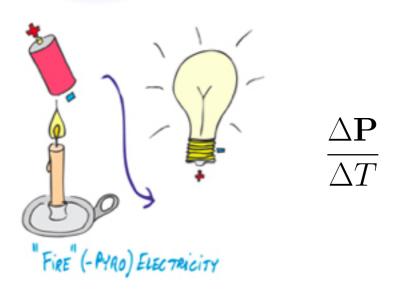


$$\frac{\Delta \mathbf{P}}{\Delta \text{strain}}$$

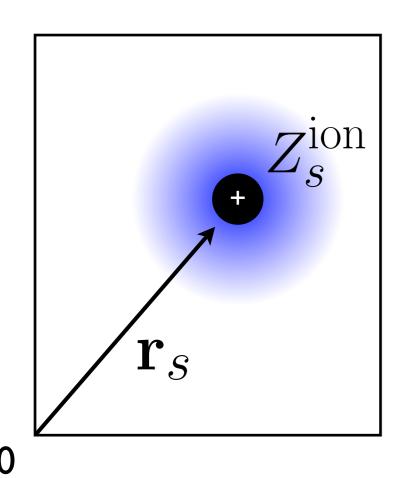


$$\frac{\Delta \mathbf{P}}{\text{displacement}}$$





Components of polarization



$$\mathbf{P} = \mathbf{P}_{ion} + \mathbf{P}_{el}$$
 ionic electronic

$$\mathbf{P}_{\text{ion}} = \frac{e}{\Omega} \sum_{s}^{\text{atoms}} Z_{s}^{\text{ion}} \mathbf{r}_{s}$$

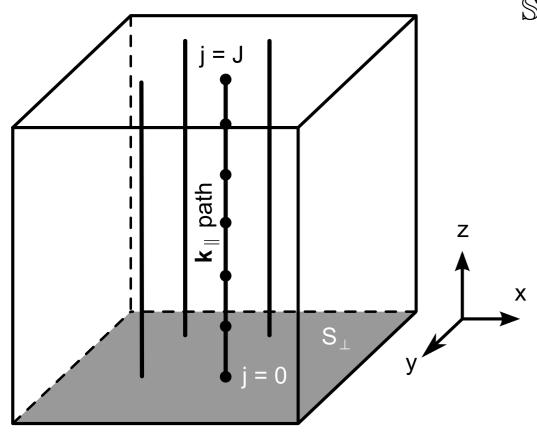
In Wien2k Z_s^{ion} is the core charge

$$-\mathbf{P}_{\text{el}} = \Omega^{-1} \int d\mathbf{r} \, \mathbf{r} \rho(\mathbf{r}) = \Omega^{-1} \sum_{n=0}^{\text{bands}} \langle \psi_n | \mathbf{r} | \psi_n \rangle \equiv \frac{2ei}{(2\pi)^3} \sum_{n=0}^{\text{bands}} \int_{BZ} d\mathbf{k} \, \langle u_{n\mathbf{k}} | \nabla_{\mathbf{k}} | u_{n\mathbf{k}} \rangle$$

King-Smith and David Vanderbilt, Phys. Rev. B 47, 1651 (1993)

Berry phase

$$d\varphi_n = -i\langle u_{n\mathbf{k}}|\nabla_{\mathbf{k}}|u_{n\mathbf{k}}\rangle \cdot d\mathbf{k} = -i\ln\langle u_{n\mathbf{k}}|u_{n(\mathbf{k}+d\mathbf{k})}\rangle$$



$$\mathbb{S}_{mn}(\mathbf{k}_j, \mathbf{k}_{j+1}) = \langle u_{m\mathbf{k}_j} | u_{n\mathbf{k}_{j+1}} \rangle$$
 WIEN2WANNIER

$$\varphi(\mathbf{k}_{\parallel}) = 2 \operatorname{Im} \left[\ln \prod_{j=0}^{J-1} \det \mathbb{S}_{M \times M}(\mathbf{k}_j, \mathbf{k}_{j+1}) \right]$$

$$\varphi_{\mathrm{el},\alpha} = S_{\perp}^{-1} \int_{S_{\perp}} \mathrm{d}S_{\perp} \; \varphi(\mathbf{k}_{\parallel})$$

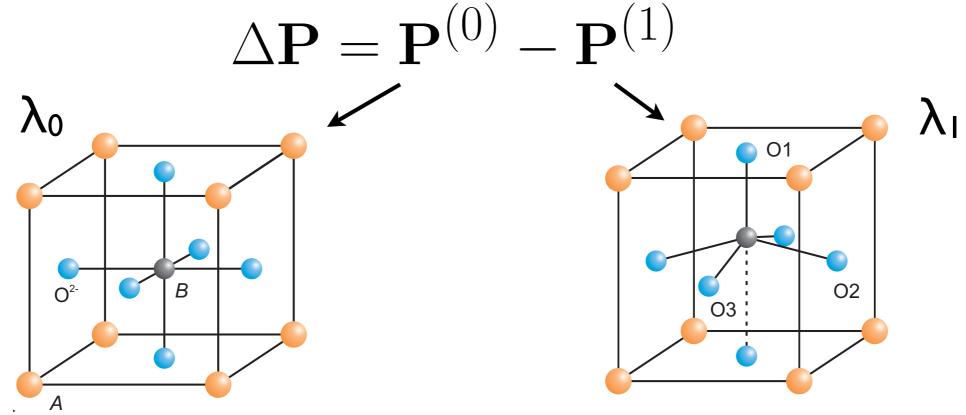
$$P_{\alpha} = \frac{e(\varphi_{\text{el},\alpha} + \varphi_{\text{ion},\alpha})}{2\pi\Omega} R_{\alpha}$$

King-Smith and David Vanderbilt, Phys. Rev. B 47, 1651 (1993)

BerryPl

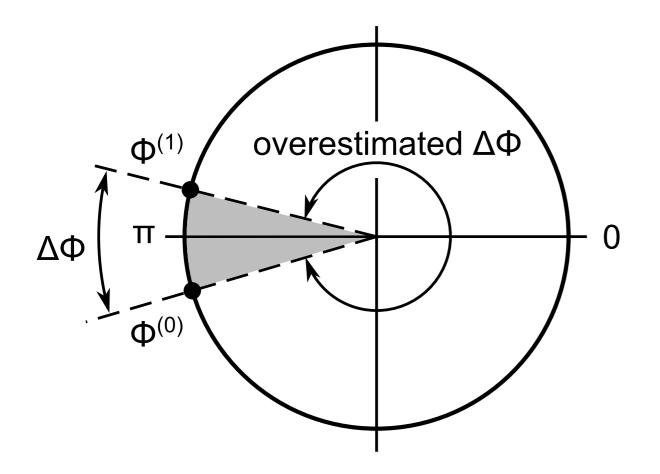
Need wien2k, wien2wannier, python 2.7.x and numpy [command line]\$ berrypi -k 6:6:6 [-s] [-j] [-o] completed SCF cycle Spin-polarized Orbital potential (e.g., LDA+U) generate k-mesh in the <u>full</u> BZ (kgen) Spin-orbit prepare nearest-neighbour k-point list calculate wavefunctions (lapw1) calculate overlap matrix S_{mn} (w2w) **Polarization** vector determine electron. and ion. phases Comput. Phys. Commun. **184**, 647 (2013)

Typical workflow



- structure file <u>must</u> preserve the symmetry
- begin with the lowest symmetry (λ_I) case
- copy case λ_1 to case λ_0
- edit structure file for case λ_0
- do <u>not</u> initialize calculation (init_lapw)
- update density (x dstart)
- run SCF cycle (run[sp]_lapw [-so -orb])
- run BerryPI

Uncertainties



$$P_{\alpha} = \frac{e(\varphi_{\text{el},\alpha} + \varphi_{\text{ion},\alpha})}{2\pi\Omega} R_{\alpha}$$

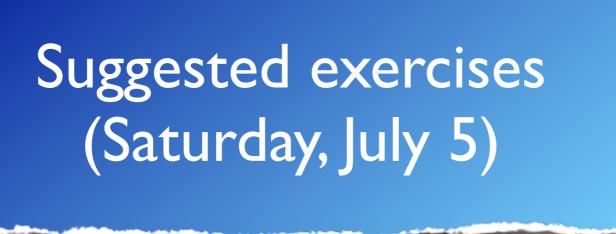
$$\Delta \mathbf{P} = \mathbf{P}^{(0)} - \mathbf{P}^{(1)} \pm \frac{e}{\Omega} \mathbf{R}$$

 cannot determine large polarization difference
 ~I C/m²

Solution: $\lambda_0 \Rightarrow \lambda_{1/2} \Rightarrow \lambda_1$

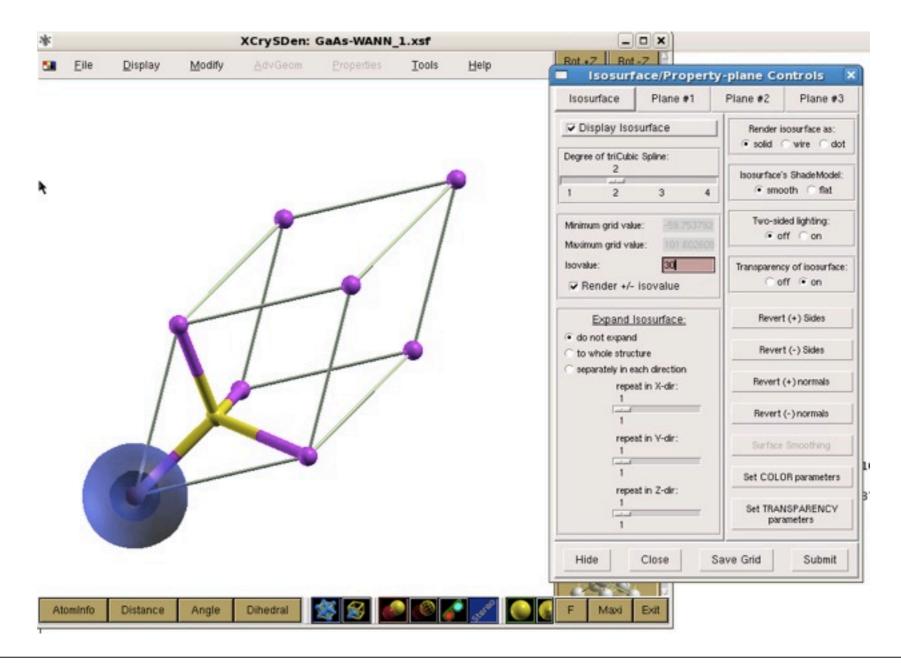
Useful resources

- Sheikh J. Ahmed et al. "BerryPI: A software for studying polarization of crystalline solids with WIEN2k density functional all-electron package", Comp. Phys. Commun. 184, 647 (2013).
- BerryPI home and tutorials: https://github.com/spichardo/BerryPI/wiki
- Raffaele Resta "Macroscopic polarization in crystalline dielectrics: the geometric phase approach" Rev. Mod. Phys. 66, 899 (1994)
- Raffaele Resta and David Vanderbilt "Theory of Polarization: A Modern Approach" in *Physics of Ferroelectrics: a Modern Perspective* (Springer, 2007)



1) GaAs — Max Localized Wannier Functions

- Build a set of atom-centered sp³ Wannier functions
- Reproduce the band structure (VB and bottom of CB)
- Wannier hamiltonian
- Plotting of WFs



2) Born effective charge in GaAs

Born effective charge is related to polarization

$$Z_{s,\alpha\beta}^* = \frac{\Omega}{e} \left. \frac{\partial P_{\alpha}}{\partial r_{s,\beta}} \right|$$

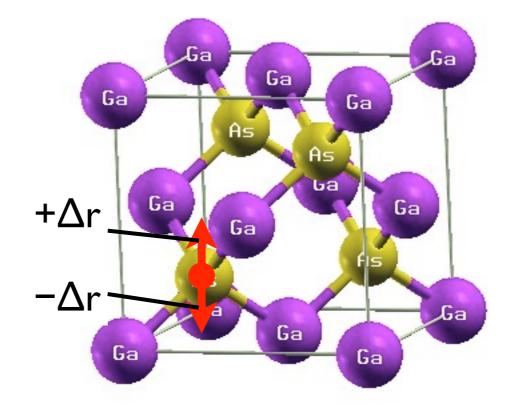
P - Polarization

r - atom position

 Ω - unit cell volume

e - elementary charge

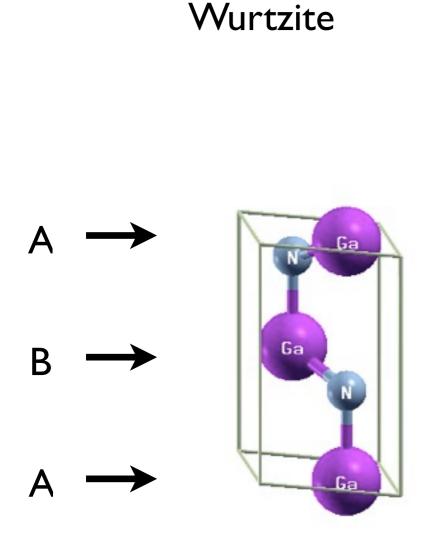
Introduce small displacements $\pm \Delta r \ll a_0$



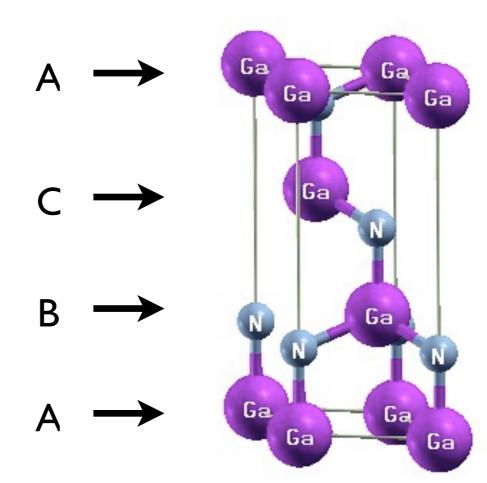
Need to compute the polarization difference between 2 structures:

$$dP = P(+\Delta r) - P(-\Delta r)$$

3) Polarization effects in GaN



Has a finite polarization



Deemed to have zero polarization (reference structure)

Zinc-blende

$$P_s(GaN) = P(w-GaN) - P(zb-GaN)$$

Acknowledgement

BerryPI contributors:

- Jon Kivinen
- Sheikh J.Ahmed
- Ben Zaporzhan
- Sam Pichardo
- Laura Curiel
- David Hassan
- Victor Xiao

WIEN2WANNIER:

Elias Assmann

