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Few words about Special Theory of Relativity

Light

Composed of photons (no mass)
Speed of light = constant

c  137 au

Atomic units:
ħ = me = e = 1
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Few words about Special Theory of Relativity

Light Matter

Composed of photons (no mass)

Lorentz Factor (measure of the relativistic effects) 

Speed of light = constant

c  137 au

Atomic units:
ħ = me = e = 1

Speed of
matter mass

v = f(mass)

mass = f(v)

Momentum: p = mv = Mv

Total energy:

Relativistic mass: M = m (m: rest mass)
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Composed of atoms (mass)

E2 = p2c2 + m2c4

E = mc2 = Mc2
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Speed of the 1s electron (Bohr model):
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« Non-relativistic » 
particle:  = 1

1s electron of Au atom = relativistic particle

Definition of a relativistic particle (Bohr model)
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Relativistic effects

Relativistic increase in the mass of an electron with its velocity (when ve  c)

1) The mass-velocity correction

+Ze



Relativistic increase in the mass of an electron with its velocity (when ve  c)

1) The mass-velocity correction

It has no classical relativistic analogue
Due to small and irregular motions of an electron about its mean position (Zitterbewegung*)

2) The Darwin term

+Ze

Relativistic effects

*Analysis of Erwin Schrödinger of the wave packet solutions of the Dirac equation for relativistic
electrons in free space:The interference between positive and negative energy states produces what
appears to be a fluctuation (at the speed of light) of the position of an electron around the median.
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Relativistic increase in the mass of an electron with its velocity (when ve  c)

1) The mass-velocity correction

It has no classical relativistic analogue
Due to small and irregular motions of an electron about its mean position (Zitterbewegung)

2) The Darwin term

It is the interaction of the spin magnetic moment (s) of an electron with the magnetic field 
induced by its own orbital motion (l)

3) The spin-orbit coupling

The change of the electrostatic potential induced by relativity is an indirect effect of the 
core electrons on the valence electrons

4) Indirect relativistic effect

+Zeffe

Relativistic effects



One electron radial Schrödinger equation
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Atomic units:
ħ = me = e = 1
1/(40) = 1

c = 1/  137 au



One electron radial Schrödinger equation
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In a spherically 
symmetric potential

Atomic units:
ħ = me = e = 1
1/(40) = 1

c = 1/  137 au
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One electron radial Schrödinger equation
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Dirac Hamiltonian: a brief description

Dirac relativistic Hamiltonian provides a quantum mechanical description 
of electrons, consistent with the theory of special relativity.

 DH with

E2 = p2c2 + m2c4

VcmpcH eD  2 



Dirac Hamiltonian: a brief description

Dirac relativistic Hamiltonian provides a quantum mechanical description 
of electrons, consistent with the theory of special relativity.
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(22) Pauli spin matrices

Momentum 
operator Rest mass

Electrostatic 
potential

VcmpcH eD  2 

(22) unit and 
zero matrices

 DH with

E2 = p2c2 + m2c4



Dirac equation: HD and  are 4-dimensional

 and  are time-independent two-component spinors describing the spatial 
and spin-1/2 degrees of freedom

 is a four-component single-particle wave function that describes spin-1/2 
particles.  
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DH

spin up

spin down

Large
components ()

Small
components ()

In case of electrons:














Leads to a set of coupled equations for  and :
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Dirac equation: HD and  are 4-dimensional

For a free particle (i.e. V = 0):
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Solution in the slow 
particle limit (p=0)

Non-relativistic limit 
decouples 1 from 2

and 3 from 4



Dirac equation: HD and  are 4-dimensional

For a free particle (i.e. V = 0):
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Antiparticles: up & down

Solution in the slow 
particle limit (p=0)

Non-relativistic limit 
decouples 1 from 2

and 3 from 4

For a spherical potential V(r):
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Dirac equation in a spherical potential

The resulting equations for the radial functions (gn and fn) are simplified 
if we define:
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Energy: Radially varying mass:

For a spherical potential V(r):



Dirac equation in a spherical potential

The resulting equations for the radial functions (gn and fn) are simplified 
if we define:
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Energy: Radially varying mass:

Then the coupled equations can be written in the form of the radial eq.:

Darwin 
term

Spin-orbit 
coupling

   11  llNote that:

For a spherical potential V(r):

Mass-velocity effect
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 One electron radial 
Schrödinger equation in a 
spherical potential



Dirac equation in a spherical potential

The resulting equations for the radial functions (gn and fn) are simplified 
if we define:
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Energy: Radially varying mass:
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Then the coupled equations can be written in the form of the radial eq.:

and Darwin 
term

Spin-orbit 
coupling

   11  llNote that:

For a spherical potential V(r):

Due to spin-orbit coupling,  is not an eigenfunction 
of spin (s) and angular orbital moment (l). 
Instead the good quantum numbers are j and 

No approximation 
have been made 

so far



Dirac equation in a spherical potential

Scalar relativistic approximation

Approximation that the spin-orbit term is small 
 neglect SOC in radial functions (and treat it by perturbation theory)

nln gg ~ nln ff ~
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No SOC  Approximate radial functions:



Dirac equation in a spherical potential

Scalar relativistic approximation

Approximation that the spin-orbit term is small 
 neglect SOC in radial functions (and treat it by perturbation theory)
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No SOC  Approximate radial functions:

The four-component wave function is now written as:

Inclusion of the spin-orbit coupling in “second 
variation” (on the large component only) 
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is a pure spin state

 is a mixture of up and down spin states



Relativistic effects in a solid

For a molecule or a solid:

Relativistic effects originate deep inside the core.

It is then sufficient to solve the relativistic equations in a spherical 
atomic geometry (inside the atomic spheres of WIEN2k). 

Justify an implementation of the relativistic effects only inside the 
muffin-tin atomic spheres



SOC: Spin orbit coupling

Implementation in WIEN2k

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Core
electrons

Core
electrons

Valence 
electrons
Valence 
electrons

« Fully » 
relativistic

Spin-compensated 
Dirac equation

Scalar relativistic 
(no SOC)

Possibility to add SOC
(2nd variational)



Interstitial RegionInterstitial Region

Valence 
electrons
Valence 
electrons

Not relativistic

SOC: Spin orbit coupling

Implementation in WIEN2k

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Core
electrons

Core
electrons

Valence 
electrons
Valence 
electrons

« Fully » 
relativistic

Spin-compensated 
Dirac equation

Scalar relativistic 
(no SOC)

Possibility to add SOC
(2nd variational)



Implementation in WIEN2k: core electrons

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Core
electrons
Core

electrons

« Fully »
relativistic

Spin-compensated
Dirac equation

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Core
electrons
Core

electrons

« Fully »
relativistic

Spin-compensated
Dirac equation

17 0.00  0  
1,-1,2 ( n,,occup)
2,-1,2 ( n,,occup)
2, 1,2 ( n,,occup)
2,-2,4 ( n,,occup)
3,-1,2 ( n,,occup)
3, 1,2 ( n,,occup)
3,-2,4 ( n,,occup)
3, 2,4 ( n,,occup)
3,-3,6 ( n,,occup)
4,-1,2 ( n,,occup)
4, 1,2 ( n,,occup)
4,-2,4 ( n,,occup)
4, 2,4 ( n,,occup)
4,-3,6 ( n,,occup)
5,-1,2 ( n,,occup)
4, 3,6 ( n,,occup)
4,-4,8 ( n,,occup)
0

case.inc for Au atom

s 0 1/2 -1 2

p 1 3/21/2 1 -2 2 4

d 2 5/23/2 2 -3 4 6

f 3 7/25/2 3 -4 6 8

l s=+1

j=l+s/2 =-s(j+1/2) occupation

s=-1 s=+1s=-1 s=+1s=-1

For spin-polarized potential,
spin up and spin down are calculated 
separately, the density is averaged 
according to the occupation number 

specified in case.inc file.

Core states: fully occupied 
 spin-compensated Dirac 

equation (include SOC)
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4s1/2

4p1/2

4p3/2
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4f5/2 
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Implementation in WIEN2k: core electrons

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Core
electrons
Core

electrons

« Fully »
relativistic

Spin-compensated
Dirac equation
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« Fully »
relativistic

Spin-compensated
Dirac equation

17 0.00  0  
1,-1,2 ( n,,occup)
2,-1,2 ( n,,occup)
2, 1,2 ( n,,occup)
2,-2,4 ( n,,occup)
3,-1,2 ( n,,occup)
3, 1,2 ( n,,occup)
3,-2,4 ( n,,occup)
3, 2,4 ( n,,occup)
3,-3,6 ( n,,occup)
4,-1,2 ( n,,occup)
4, 1,2 ( n,,occup)
4,-2,4 ( n,,occup)
4, 2,4 ( n,,occup)
4,-3,6 ( n,,occup)
5,-1,2 ( n,,occup)
4, 3,6 ( n,,occup)
4,-4,8 ( n,,occup)
0

case.inc for Au atom

s 0 1/2 -1 2

p 1 3/21/2 1 -2 2 4

d 2 5/23/2 2 -3 4 6

f 3 7/25/2 3 -4 6 8

l s=+1

j=l+s/2 =-s(j+1/2) occupation

s=-1 s=+1s=-1 s=+1s=-1

For spin-polarized potential,
spin up and spin down are calculated 
separately, the density is averaged 
according to the occupation number 

specified in case.inc file.

Core states: fully occupied 
 spin-compensated Dirac 

equation (include SOC)



Implementation in WIEN2k: valence electrons

Valence electrons INSIDE atomic spheres are treated 
within scalar relativistic approximation [1] if RELA

is specified in case.struct file (by default).

[1] Koelling and Harmon, J. Phys. C (1977)

Title
F   LATTICE,NONEQUIV.ATOMS:  1 225 Fm-3m
MODE OF CALC=RELA unit=bohr

7.670000  7.670000  7.670000 90.000000 90.000000 90.000000
ATOM   1: X=0.00000000 Y=0.00000000 Z=0.00000000

MULT= 1          ISPLIT= 2
Au1        NPT=  781  R0=0.00000500 RMT=    2.6000   Z: 79.0
LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000

0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000

48      NUMBER OF SYMMETRY OPERATIONS

 no  dependency of the wave function, (n,l,s) are still good quantum numbers

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Valence 
electrons
Valence 
electrons

Scalar relativistic
(no SOC)

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Valence 
electrons
Valence 
electrons

Scalar relativistic
(no SOC)

 all relativistic effects are included except SOC
 small component enters normalization and calculation of charge inside spheres
 augmentation with large component only
 SOC can be included in « second variation »

Valence electrons in interstitial region 
are treated classically



Implementation in WIEN2k: valence electrons

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Valence 
electrons
Valence 
electrons

Scalar relativistic
(no SOC)

Possibility to add SOC
(2nd variational)

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Valence 
electrons
Valence 
electrons

Scalar relativistic
(no SOC)

Possibility to add SOC
(2nd variational)

SOC is added in a second variation (lapwso):

- First diagonalization (lapw1):
- Second diagonalization (lapwso):

1111  H
   SOHH1

The second equation is expanded in the basis of 
first eigenvectors (1)

   ji
N

i

i
SO

jj
ij H 11111 

sum include both up/down spin states
 N is much smaller than the basis size in lapw1



Implementation in WIEN2k: valence electrons

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Valence 
electrons
Valence 
electrons

Scalar relativistic
(no SOC)

Possibility to add SOC
(2nd variational)

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Valence 
electrons
Valence 
electrons

Scalar relativistic
(no SOC)

Possibility to add SOC
(2nd variational)

SOC is added in a second variation (lapwso):

- First diagonalization (lapw1):
- Second diagonalization (lapwso):

1111  H
   SOHH1

The second equation is expanded in the basis of 
first eigenvectors (1)

   ji
N

i

i
SO

jj
ij H 11111 

sum include both up/down spin states
 N is much smaller than the basis size in lapw1

 SOC is active only inside atomic spheres, only spherical potential (VMT) is taken into 
account, in the polarized case spin up and down parts are averaged. 

 Eigenstates are not pure spin states, SOC mixes up and down spin states 

 Off-diagonal term of the spin-density matrix is ignored. It means that in each SCF cycle 
the magnetization is projected on the chosen direction (from case.inso)

VMT: Muffin-tin potential (spherically symmetric)



Controlling spin-orbit coupling in WIEN2k

 Do a regular scalar-relativistic “scf” calculation 

 save_lapw

 initso_lapw

WFFIL
4  1  0                      llmax,ipr,kpot
-10.0000   1.50000           emin,emax (output energy window)
0.  0.  1. direction of magnetization (lattice vectors)

NX number of atoms for which RLO is added
NX1   -4.97      0.0005      atom number,e-lo,de (case.in1), repeat NX times
0 0 0 0 0                    number of atoms for which SO is switch off; atoms

 case.inso:

 case.in1(c):
(…)
2    0.30      0.005 CONT 1 
0    0.30      0.000 CONT 1 

K-VECTORS FROM UNIT:4   -9.0      4.5 65   emin/emax/nband         

 symmetso (for spin-polarized calculations only)

 run(sp)_lapw -so -so switch specifies that scf cycles will include SOC 



Controlling spin-orbit coupling in WIEN2k

The w2web interface is helping you

Non-spin polarized case



Controlling spin-orbit coupling in WIEN2k

The w2web interface is helping you

Spin polarized case



Relativistic effects in the solid: Illustration

LDA overbinding (7%)

No difference NREL/SREL

Bulk modulus:
- NREL: 131.4 GPa
- SREL: 131.5 GPa
- Exp.: 130 GPa

hcp-Be
Z = 4



Relativistic effects in the solid: Illustration

LDA overbinding (7%)

No difference NREL/SREL

Bulk modulus:
- NREL: 131.4 GPa
- SREL: 131.5 GPa
- Exp.: 130 GPa

LDA overbinding (2%)

Clear difference NREL/SREL

Bulk modulus:
- NREL: 344 GPa
- SREL: 447 GPa
- Exp.: 462 GPa

hcp-Be
Z = 4

hcp-Os
Z = 76



Relativistic effects in the solid: Illustration

 Scalar-relativistic (SREL):
- LDA overbinding (2%)
- Bulk modulus: 447 GPa

+ spin-orbit coupling (SREL+SO):
- LDA overbinding (1%)
- Bulk modulus: 436 GPa

 Exp. Bulk modulus: 462 GPa

hcp-Be
Z = 4

hcp-Os
Z = 76
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Direct relativistic effect (mass enhancement)  contraction of 0.46% only

(1) Relativistic orbital contraction 

However, the relativistic contraction of the 6s orbital is large (>20%)  
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(1) Orbital Contraction: Effect on the energy



(2) Spin-Orbit splitting of p states
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(2) Spin-Orbit splitting of p states
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 p3/2 (=-2): nearly same behavior than non-relativistic p-state 
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(2) Spin-Orbit splitting of p states
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 p1/2 (=1): markedly different behavior than non-relativistic p-state 
g=1 is non-zero at nucleus

1.0
r (bohr)

0.0 0.5 1.5 2.0
r (bohr)

2.5
0.0

0.1

0.2

0.3

0.5

0.7

0.6

0.4



(2) Spin-Orbit splitting of p states
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(2) Spin-Orbit splitting of p states

Scalar-relativistic p-orbital is similar to p3/2 wave function, but 
does not contain p1/2 radial basis function
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(3) Orbital expansion: Au(d) states

Higher l-quantum number states expand due to better shielding of nucleus charge from 
contracted s-states
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(3) Orbital expansion: Au(d) states

Higher l-quantum number states expand due to better shielding of nucleus charge from 
contracted s-states
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(3) Orbital expansion: Au(d) states

Higher l-quantum number states expand due to better shielding of nucleus charge from 
contracted s-states
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(3) Orbital expansion: Au(d) states

Higher l-quantum number states expand due to better shielding of nucleus charge from 
contracted s-states
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Relativistic effects on the Au energy levels



Atomic spectra of gold

SO splitting

SO splitting



Ag – Au: the differences (DOS & optical prop.)

Ag Au



Relativistic semicore states: p1/2 orbitals

Electronic structure of fcc Th, SOC with 6p1/2 local orbital

J.Kuneš, P.Novak, R.Schmid, P.Blaha, K.Schwarz, Phys.Rev.B. 64, 153102 (2001)

6p1/2

6p1/2

6p3/2

6p3/2

Energy vs. basis size DOS with and without p1/2

p1/2 included

p1/2 not included



SOC in magnetic systems

SOC couples magnetic moment to the lattice

Symmetry operations acts in real and spin space 

direction of the exchange field matters (input in case.inso)

number of symmetry operations may be reduced (reflections act differently on 
spins than on positions)

time inversion is not symmetry operation (do not add an inversion for klist)

initso_lapw (must be executed) detects new symmetry setting

[100] [010] [001] [110]

1

mx

my

2z

A A A A

A B B -

B A B -
B B A B

Direction of magnetization



Relativity in WIEN2k: Summary

WIEN2k offers several levels of treating relativity:
non-relativistic: select NREL in case.struct (not recommended)

standard: fully-relativistic core, scalar-relativistic valence

mass-velocity and Darwin s-shift, no spin-orbit interaction

”fully”-relativistic:

adding SO in “second variation” (using previous eigenstates as basis)

adding p1/2 LOs to increase accuracy (caution!!!)

x lapw1 (increase E-max for more eigenvalues, to have
x lapwso basis for lapwso)

x lapw2 –so -c SO ALWAYS needs complex lapw2 version

Non-magnetic systems:

SO does NOT reduce symmetry. initso_lapw just generates case.inso and case.in2c.

Magnetic systems:

symmetso dedects proper symmetry and rewrites case.struct/in*/clm*



ATOMIC STRUCTURE OF CuO

CuO4 square planar

Cu

O

CuO interlude



ATOMIC STRUCTURE OF CuO

CuO2 ribbons

Cu

O

CuO interlude



ATOMIC STRUCTURE OF CuO

Oxygen 4-fold coordinated

Cu

O

CuO interlude



ATOMIC STRUCTURE OF CuO

Monoclinic 3D atomic structure

Cu

O

CuO interlude



MAGNETIC STRUCTURE OF CuO
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MAGNETIC STRUCTURE OF CuO
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AFM 
interactions 
along [1 0 -1]

FM 
interactions 
along [1 0 1] 

LOW-TEMPERATURE MAGNETIC STRUCTURE OF CuO FROM
SINGLE-CRYSTAL NEUTRON DIFFRACTION[1]
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[1] J.B. Forsyth et al., J. Phys. C: Solid State Phys. 21 (1988) 2917
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[1] X. Rocquefelte, P. Blaha, K. Schwarz, S. Kumar, J. van den Brink, Nature Comm., Accepted

CuO interlude

Estimation of the Magneto-crystalline Anisotropy Energy (MAE) of CuO

Allows to define the magnetization 
easy and hard axes

Here we have considered the 
following expression:

MAE = E[u v w] – E[0 1 0]

E[uvw] is the energy deduced from 
spin-orbit calculations with the 
magnetization along the [uvw] 

crystallographic direction



Relativistic effects
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Non-collinear magnetism

(WIEN2k / WIENncm)

Xavier Rocquefelte
Institut des Matériaux Jean‐Rouxel (UMR 6502)

Université de Nantes, FRANCE

20th WIEN2k Workshop
PennStateUniversity – 2013



Pauli Hamiltonian for magnetic systems
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2x2 matrix in spin space, due to Pauli spin operators
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Pauli Hamiltonian for magnetic systems
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2x2 matrix in spin space, due to Pauli spin operators

Wave function is a 2-component vector (spinor) – It corresponds to 
the large components of the dirac wave function (small components 
are neglected)
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Pauli Hamiltonian for magnetic systems
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Effective electrostatic 
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Effective magnetic 
field
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Pauli Hamiltonian for magnetic systems

  ...
2

2
2

 lBV
m

H effBeff
e

P

 

2x2 matrix in spin space, due to Pauli spin operators

Effective electrostatic 
potential

Effective magnetic 
field

Spin-orbit 
coupling
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dV

rcM e

1
2 22

2


xcHexteff VVVV  xcexteff BBB 

Exchange-correlation 
potential

Exchange-correlation 
field

Many-body effects which are defined 
within DFT LDA or GGA



Exchange and correlation

From DFT exchange correlation energy:

        3 ,  , drmrrmrE hom
xcxc

  

Local function of the electronic density () and the magnetic moment (m)

Definition of Vxc and Bxc (functional derivatives):

 







mEV xc

xc

,  
m

mEB xc
xc 







,

LDA expression for Vxc and Bxc:
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Bxc is parallel to the magnetization density vector (m)^



Non-collinear magnetism

Direction of magnetization vary in space, thus spin-orbit term is present
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 Non-collinear magnetic moments
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 1 and 2 are 
non-zero

 Solutions are non-pure spinors



Collinear magnetism

Magnetization in z-direction / spin-orbit is not present
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 Collinear magnetic moments

 Solutions are pure spinors
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    Non-degenerate energies



Non-magnetic calculation

No magnetization present, Bx = By = Bz = 0 and no spin-orbit coupling

  ...
2

2
2

 lBV
m

H effBeff
e

P

 

 






















eff
e

eff
e

V
m

V
m

2
2

2
2

2
0

0
2













 0


 







 


0

  

 Solutions are pure spinors

 Degenerate spin solutions 



Magnetism and WIEN2k

Wien2k can only handle collinear or non-magnetic cases

run_lapw script: 

x lapw0
x lapw1
x lapw2
x lcore
x mixer

non-magnetic case

m = n – n = 0

run_lapw script: 

x lapw0
x lapw1 –up
x lapw1 -dn
x lapw2 –up
x lapw2 -dn
x lcore –up
x lcore -dn
x mixer

magnetic case

m = n – n  0
DOS

EF

DOS

EF



Magnetism and WIEN2k

Spin-polarized calculations

 runsp_lapw script (unconstrained magnetic calc.)

 runfsm_lapw -m value (constrained moment calc.)

 runafm_lapw (constrained anti-ferromagnetic calculation)

 spin-orbit coupling can be included in second variational step

 never mix polarized and non-polarized calculations in one case 
directory !!!



Non-collinear magnetism

 code based on Wien2k (available for Wien2k users)

In case of non-collinear spin arrangements WIENncm (WIEN2k 
clone) has to be used:

 structure and usage philosophy similar to Wien2k
 independent source tree, independent installation

WIENncm properties:

 real and spin symmetry (simplifies SCF, less k-points)

 constrained or unconstrained calculations (optimizes magnetic moments)

 SOC in first variational step, LDA+U

 Spin spirals



Non-collinear magnetism

For non-collinear magnetic systems, both spin channels have to be 
considered simultaneously

runncm_lapw script: 

xncm lapw0
xncm lapw1
xncm lapw2
xncm lcore
xncm mixer

Relation between spin density 
matrix and magnetization

mz = n – n  0

mx = ½(n + n)  0

my = i½(n - n)  0

DOS

EF



WienNCM: Spin spirals

Transverse spin wave

qR 




R
     cos , sinsin , cos nnn RqRqmm




 spin-spiral is defined by a vector q given in reciprocal space and an angle 
between magnetic moment and rotation axis. 

 Rotation axis is arbitrary (no SOC) – fixed as z-axis in WIENNCM

 Translational symmetry is lost !

 But WIENncm is using the generalized Bloch theorem. The calculation of spin 
waves only requires one unit cell for even incommensurate modulation q vector. 



WienNCM: Usage

1. Generate the atomic and magnetic structures

2. Run initncm (initialization script)

3. Run the NCM calculation:

 Create atomic structure

 Create magnetic structure

See utility programs: ncmsymmetry, polarangles, …

 xncm (WIENncm version of x script)

 runncm (WIENncm version of run script)

More information on the manual (Robert Laskowski)

rolask@theochem.tuwien.ac.at


