

WIEN2k- hardware/software

- WIEN2k runs on any Linux platform from PCs, Macs, workstations, clusters to supercomputers
 - Intel 17 quad (six)-core processors with fast memory bus (1.5-3 Gb/core, Gbit-network, SATA disks). 1000 € /PC,
 - with a few such PCs you have a quite powerful cluster (k-parallel)
 - 60 100 atom / cell, requires 2-4 Gb RAM
 - installation support for many platforms + compiler
- Fortran90 (dynamical allocation, modules)
 - real/complex version (inversion)
 - many individual modules, linked together with C-shell or perl-scripts
- web-based GUI w2web (perl)
- f90 compiler (ifort, gfortran), BLAS-library (mkl, gotolib), FFTW, perl5, ghostscript (+jpg), gnuplot(+png), Tcl/Tk (Xcrysden), pdf-reader, www-browser, octave, opendx

Installation of WIEN2k

- Register via http://www.wien2k.at
- Create your \$WIENROOT directory (e.g. ./WIEN2k)
- Download wien2k_13.tar and examples (executables)
- Uncompress and expand all files using:
 - tar –xvf wien2k_12.tar
 - gunzip *.gz
 - ./expand_lapw
- This leads to the following directories:

./SRC

(scripts, ug.ps)

./SRC_aim

(programs)

...

SRC_templates

(example inputs)

...

SRC_usersguide_html

(HTML-version of UG)

example_struct_files

(examples)

TiC

siteconfig_lapw


```
*
                                                             *
                               WIEN
  *
                        site configuration
      S
          specify a system
          specify compiler
          specify compiler options, BLAS and LAPACK
          configure Parallel execution
          Dimension Parameters
     R
         Compile/Recompile
     U Update a package
          Perl path (if not in /usr/bin/perl)
     L
          Ouit
D: define NMATMAX (adjust to your hardware/paging!):
NMATMAX=5000 → 256Mb (real) or 500Mb (complex)
NMATMAX=10000 → 1Gb (real) or 2Gb (complex) → 80-100 atoms/unitcell
NUME=1000 → number of eigenvalues (adjust to NMATMAX)
```


Compilation

- recommendation: Intels Fortran compiler (includes mkl)
 - free for non-commercial (but not for academic), www intel.com
 - which ifort → tells you if you can use ifort and which version you have
 - usually installed in /opt/intel/composerxe-2011..../bin/intel64 (ls)
 - include ifortvars.csh and mklvars.csh in your .bashrc/.cshrc file:
 - source /opt/intel/11.0/074/bin/ifortvars.csh intel64
 - source /opt/intel/11.0/074/mkl/tools/environment/mklvarsem64t.csh
 - ifort 12 (vers. 8.0 and early 12.x buggy, 9.x, 10.0, 11.x ok)
 - for older versions dynamic linking recommended (depends on ifort version, requires system and compiler libraries at runtime, needs \$LD_LIBRARY_PATH)
 - IA32 bit, IA64 bit (Itanium) or Intel64 (em64t) -version
 - mkl-library: names change with every version, see: http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
 - 9.x: -L/opt/intel/mkl/lib -lmkl_lapack -lmkl_em64t -lmkl_core (→libmkl_core.so)
 - 10.0: -L/opt/intel/mkl/lib -lmkl_lapack -lmkl
 - compiler/linker options depend on compiler version + Linux-version !!
 - -FR (free format)-Iguide –Ipthread -pthread

compilation

- gfortran + gotolib, acml-lib, ATLAS-BLAS
 - -static linking possible
- siteconfig has support for various ifort versions and gfortran
- it does NOT make sense to invest in new hardware but use a "free" compiler

userconfig_lapw

- Every user should run userconfig_lapw (setup of environment)
 - support for tcsh and bash (requires .cshrc or .bashrc)
 - sets PATH to \$WIENROOT, sets variables and aliases
 - \$WIENROOT, \$SCRATCH, \$EDITOR, \$PDFREADER, \$STRUCTEDIT_PATH
 - pslapw: ps -ef | grep lapw
 - lsi: ls –als *.in* lso: ls -als *.output*
 - lss: *.scf* lsc: *.clm*
 - limit stacksize unlimited (otherwise: "segmentation fault")
 - \$OMP_NUM_THREADS (for mkl+multi-core); \$LD_LIBRARY_PATH

w2web

- w2web: acts as webserver on a userdefined (high) port.
 - define user/password and port. (http://host.domain.xx:5000)
 - behind firewall create a "ssh-tunnel": ssh -fNL 2000:host:2000 user@host
 - ~/.w2web/hostname/conf/w2web.conf: (configuration file)
 - deny=*.*.*.*
 - allow=128.130.134.* 128.130.142.10
 - define execution types: NAME=commands (eg.: batch=batch < %f)</p>

k-point Parallelization (lapw1+lapw2)

- very efficient parallelization even on loosely coupled PCs (slow network):
 - common NFS filesystem (files must be accessible with the same path on all machines; use /host1 as data-directory on host1)
 - rsh/ssh without password (.rhosts; private/public keys)
 - ssh-keygen –t rsa
 - append .ssh/authorized_keys on remote host with id_rsa.pub of local host
 - .machines file:
 - 1:host1 (speed:hostname)
 - 2:host2
 - granularity:1 (1:10k+20k; 3: 3+6+3+6+3+6+rest → load balancing, not with \$SCRATCH, -it
 - extrafine:1 (rest in junks of 1 k)
 - testpara (tests distribution); run_lapw -p
 - case must fit into memory of one PC!
 - high NFS load: use local \$SCRATCH directory (only with commensurate k-points/hosts)
 - \$OMP_NUM_THREADS (parallel diag. with mkl on multi-core CPU)

Flow of parallel execution

lapw1para

lapw2para

fine-grain mpi-parallelization

- for bigger cases (> 50 atoms) and more than 4 cores
- fast network (Gbit, Myrinet, Infiniband, shared memory machines)
- mpi (you need to know which mpi is installed (mpich-1.2, open-mpi, intel-mpi,...)
 - mpif90 or mpiifort
- scalapack (included in ifort 11)
 - Ilibmkl_blacs_lp64.a or ibmkl_blacs_openmpi_lp64.a or libmkl_blacs_intelmpi_lp64.a
- FFTW (v. 2 or 3; mpi and sequ. version needed, -DFFTW2/3 in Makefiles)
- .machines file:
 - 1:host1:4 host2:4
 - lapw0:host1:4 host2:4
- simultaneous k-point and mpi-parallelization possible
 - BN/Rh(111) nanomesh: cell with 1100 atoms

8 mpi-parallel jobs on host1 and host2

8 parallel jobs; atom-loops only + fft !!!

WIEN2k_13.1

 always use latest version (bug fixes, improved performance, new features)

eventually: use prebuilt executables from our website!!

Getting help

- help_lapw:
 - opens usersguide.pdf; Use ^f keyword to search for an item ("index")
- html-version of the UG: (\$WIENROOT/SRC_usersguide/usersguide.html)
- http://www.wien2k.at/reg_user
 - FAQ page with answers to common questions
 - Update information: When you think the program has an error, please check newest version
 - Textbook section: DFT and the family of LAPW methods by S.Cottenier
 - Mailing-list:
 - subscribe to the list (always use the same email)
 - full text search of the "digest" (your questions may have been answered before)
 - posting questions: Provide sufficient information, locate your problem (case.dayfile, *.error, case.scf, case.outputX).
 - "My calculation crashed. Please help." This will most likely not be answered.