Exercise: Wannier Functions

We will construct maximally localized Wannier functions for SrVO₃ (or a material of your choice) using *wien2wannier* and *wannier90*.

NB: there is no w2web module for this. You have to use the command line.

NB2: Steps 1–8 will guide you through the complete "Wannierization" process. Everything after that is "optional".

More information:

http://www.wien2k.at/reg_user/unsupported/wien2wannier/
→ user guide

http://wannier.org

Easy as 1-2-3 . . .

- standard Wien2k run
 - spacegroup 221 Pm 3m, a = 7.2613 Bohr
 - Sr (0, 0, 0), V (1/2, 1/2, 1/2), O (0, 1/2, 1/2)
 - obtain band structure
- identify target bands ("low-energy model")
 - minimal (d-only): V-t2q around EF
 - or (your choice) dp-model: $V-t_{2q} + O-p$
- g prepare a directory for wien2wannier
 - decide on a k-mesh (e.g. 4 x 4 x 4)
 - prepare_w2wdir.sh case w2wdir creates w2wdir (use e.g. k444) and copies some files
 - cd w2wdir

. . . 4-5-6-7-8

- 4 write input files: init_w2w
 - follow instructions
 - · do not shift k-mesh
 - use "common sense" . . .
- 6 eigenvectors on full k-mesh: x lapw1
- 6 compute overlap matrix: w2w case
- 8 optimize U(k): wannier90.x case
- ... and you're done!

Consistency Checks and Analysis

- Wannier function spread (△r²)
 - look for "Final State" in case.wout
 - should be $\sim 1.6 \text{ Å}^2$
- compare bandstructure Wien2k vs. Wannier interpolation
 - in gnuplot:

- look at the hopping matrix elements
 (→ tight-binding Hamiltonian H(R), case_hr.dat)
 - Do you see the proper symmetries?
 - Do the hoppings decay quickly enough? (Exponential localization!)

If You Still Have Time

- compare d-only and dp-models
 - How do the "V-d" WF change (hoppings, spread)?
- Check k-mesh convergence. When do you see convergence of
 - the bandstructure?
 - H(R)?
 - the spreads?
- plot the Wannier functions (→ user guide, or ask help)
- write_wplotin case
- write_wplotdef case
- 3 wplot case

- prepare_plots.sh case
- xsfAll.sh case
- 3 xcrysden -xsf case_i.xsf.gz