

Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

WIEN2k calculates ELNES / XANES

EELS : Electron Energy Loss SpectroscopyXAS: X-ray Absorption Spectroscopy

INTRODUCING EELS

Electron Energy Loss Spectroscopy is performed in a Transmission Electron Microscope, using a beam of high-energy electrons as a probe. The energy distribution of the beam gives a loss spectrum similar to XAS. Focussed probes give excellent spatial resolution ($\sim 0.5 \text{ Å}$).

Terminology for ionization edges

6

instrumentation

XAS: synchrotron EELS: microscope

THEORY OF EELS : A double differential scattering cross-section is calculated by summing over all possible transitions between initial and final states.

The transition probabilities are described by Fermi's golden rule.

$$\frac{\partial^2 \sigma}{\partial E \partial \Omega}(E, \boldsymbol{Q}) = \zeta \sum_{I, F} \frac{k_F}{k_I} \left| \left\langle I \, k_I \, \left| V \, \right| \, k_F \, F \right\rangle \right|^2 \delta \left(E_I - E_F \right)$$

- V is the interaction potential between the fast beam electron and an electron in the sample.
- F, I the sample states, can be taken from electronic structure calculations.
- k_F and k_I the probe states, are typically described as plane waves when Bragg scattering effects are neglected.

In experiment, one usually integrates over a range of scattering angles, due to the beam width and spectrometer aperture. → differential cross section :

$$\frac{\partial \sigma}{\partial E}(E;\alpha,\beta) = \int_{\alpha,\beta} d\Omega \zeta \sum_{I,F} \frac{k_F}{k_I} \left| \left\langle I k_I \left| V \right| k_F F \right\rangle \right|^2 \delta \left(E_I - E_F \right)$$

gun

Theory (EELS ----- XAS)

9

dipole approximation $\vec{q}.\vec{R} << 1 \rightarrow e^{\vec{q}\vec{R}} = 1 + i\vec{q}.\vec{R} + \frac{(\vec{q}.\vec{R})^2}{2!} + \Box$

280

300

320

Loss Energy [eV]

340

360

 \rightarrow Probes local, symmetry-selected (I_c+1) unoccupied DOS

2. WIEN2k Calculations.

calculation of spectra using WIEN2k Set up structure and initialize SCF calculation x qtl -telnes Prepare case.innes Prepare case.inxs or x telnes3 x xspec EELS XAS x broadening

12

ELNES workflow

ELNES input w2web

Cr3C2@raphael.phys.washing	yton.edu - Windows Internet Explorer		
🕒 💽 👻 🔛 http://raphae	l.phys. washington.edu :7890/index.pl?SID=954086	🔻 🔯 🍫 🗙 🚼 Google	۶ -
🙀 Favorites 🛛 🖶 👻 🏈 Gm	aail - Inbox - kevinjoriss DS De Standaard Online 🗸 Cr3C2@raphael.phys.w 🗴	🏠 🔻 🖾 🝷 🚍 🕈 Page 🕇	 Safety
IEN	Session: Cr3C2 /phys/users/jorissen/Cr3C2		13:31:13 idle <u>refresh</u> <u>no refresh</u>
	Title: Cr L1 edge of first atom Atom: 1: Cr0+ ▼ Edge: L1 ▼ (n=1 l=0) Edge onset: 696 eV Beam energy: 200 keV Energy grid: 0.0000 eV to 15.0000 eV in steps of 0.0500 eV		^
Execution >> StructGen [™] initialize calc. run SCF	Collection s.a.: 5.00 mrad Convergence s.a.: 1.87 mrad Spectrometer broadening 0.50 eVQ-mesh: NR=5 NT=2		
optimize(V,c/a) mini. positions	Advanced settings: Branching ratio: (statistical if empty) Spinorbit splitting of core state (eV): (calculated if empty)		
<c tasks<br="">EL Dens DOS XSPEC TELNES3 OPTIC Bandstructure</c>	✓ Orientation sensitive: α=0 °, β=90 °, γ=0 ° Integrate over equivalent atoms: to (all eq. atoms if empty) Detector position: θ_x 0.000 mrad, θ_y 0.000 mrad Modus: energy Initialization: Ø Coloulote DOS		E.
Files >> struct file(s) input files output files SCF files	✓ Calculate DOS ✓ Write DOS ✓ Calculate rotation matrices ✓ write rotation matrices Verbosity: basic ▼ File headers: Write headers (default) ▼ Interaction potential: relativistic (recommended) ▼ Q-grid: U uniform ♥ 0 = (not used for uniform grid)		
Session Mgmt. >> change session change dir change info Configuration Usersguide	Interaction order: all λ (default): Final state selection rule: L=I+/-1 (default) Extend potential beyond Rmt: rmax= bohr Set Fermi energy manually: EF= Ry Read core state wavefunction: filename= case.cwf Read final state wavefunctions: filename= case.finalwf	•	
IUTERATION BY	Calculate DOS only		.

ELNES input file (case.innes)

15

XSPEC-task

Execution >>] [StructGen[™]] [view structure] [initialize calc.] [run SCF] [single prog.] [optimize(V,c/a)] [mini. positions]

[Utils.>>]

[<< Tasks] [El. Dens.] [DOG] [XSPEC] [TELNES.2] [OPTIC] [Bandstructure]

[Files >>] [struct file(s)] [input files] [output files]

[SCF files]

[Session Mgmt.>>] [change session] [change dir]

[change info]

[Configuration]

Usersguide [html-Version] [pdf-Version]

Session: [<u>magnetite</u>] /area51/pblaha/lapw/correlated/magnetite	
VODEO	

[Spin UP][Spin DOWN]

Spin UP selected.

XSPEC

If you want to inclu	de states with higher energy
edit magnetite.in1	Edit in1

x lapw1 -up Calculate eigenvalues v interactively

x lapw1 -dn Calculate eigenvalues 🔽 interactively

x lapw2 -qtl -up Calculate partial charges v interactively

x xspec -up Calculate X-ray spectra I interactively 1 (atom) plot Plot XSPEC 0,0.5,0.5 (split, Int1, Int2) -2,0.02,15 (EMIN, DE, EMAX) ABS (type of spectrum) 1.00 (s) 2.0 (gamma0) 1.50 (W only for EMIS) AUTO (AUTO or MANually select Energy) -6.93 -10.16 -13.9 -13.9	edit magnetite.inxs Edit input-file for XSPEC	Title: Atom 1 L3 absorption spectrum		
x xspec -up Calculate X-ray spectra 🖓 interactively 2 (n core) plot Plot XSPEC 0,0.0,5,0.5 (split, Intl, Int2) -2,0.02,15 (EMIN,DE,EMAX) ABS (type of spectrum) 1.00 (S) 2.0 (gamma0) 1.50 (W only for EMIS) AUTO (AUTO or MANually select Energy -6.93 -10.16 -13.9		1	(atom)	
plot Plot XSPEC 1 (l core) 0,0.5,0.5 (split, Intl, Int2) -2,0.02,15 (EMIN, DE, EMAX) ABS (type of spectrum) 1.00 (S) 2.0 (gamma0) 1.50 (W only for EMIS) AUTO (AUTO or MANually select Energy -6.93 -10.16 -13.9 -13.9	x xspec -up Calculate X-ray spectra 🔽 interactively	2	(n core)	
plot Plot XSPEC 0,0.5,0.5 (split, Int1, Int2) -2,0.02,15 (EMIN, DE, EMAX) ABS (type of spectrum) 1.00 (s) 2.0 (gamma0) 1.50 (W only for EMIS) AUTO (AUTO or MANually select Energy -6.93 -10.16 -13.9 -13.9		1	(l core)	
-2,0.02,15 (EMIN,DE,EMAX) ABS (type of spectrum) 1.00 (S) 2.0 (gamma0) 1.50 (W only for EMIS) AUTO (AUTO or MANually select Energy -6.93 -10.16 -13.9	plot Plot XSPEC	0,0.5,0.5	(split, Int1, Int2)	
ABS (type of spectrum) 1.00 (S) 2.0 (gamma0) 1.50 (W only for EMIS) AUTO (AUTO or MANually select Energy -6.93 -10.16 -13.9		-2,0.02,15	(EMIN, DE, EMAX)	
1.00 (S) 2.0 (gamma0) 1.50 (W only for EMIS) AUTO (AUTO or MANually select Energy -6.93 -10.16 -13.9 -10.16		ABS	(type of spectrum)	
2.0 (gamma0) 1.50 (W only for EMIS) AUTO (AUTO or MANually select Energy -6.93 -10.16 -13.9		1.00	(S)	
1.50 (W only for EMIS) AUTO (AUTO or MANually select Energy -6.93 -10.16 -13.9 -13.9		2.0	(ganma0)	
AUTO (AUTO or MANually select Energy -6.93 -10.16 -13.9		1.50	(W only for EMIS)	
-6.93 -10.16 -13.9		AUTO	(AUTO or MANually select Energy	
-10.16 -13.9		-6.93		
-13.9		-10.16		
		-13.9		

16:42:50 ide [retresh] | [no retresh]

Practical considerations

- Spectra usually converge easily with respect to RKMAX, k-mesh, SCF criteria
- But you should check anyway (see Cu L3)
- Optimizing positions may be necessary
- You may need to sum over all "C" atoms in the unit cell. (Especially for orientation-resolved calculations.)
- You probably need to use a "core hole". This can be a lot of work.
- Your results may be wrong even if you do everything right. (But often they are reasonably good.)
- To compare to experiment, you'll probably fiddle with the broadening, the onset energy, and the branching ratio (L3/L2)

Convergence of Cu L3 edge with # k-points

Fig. 8. Cu L₃ edge in fcc-Cu calculated for different number of k-points in the whole BZ. The calculation was performed with RKMAX = 8. The structures were broadened with a Gaussian of 0.7 eV to account for experimental broadening. Lifetime broadening was modeled with a linear approximation.

Features of WIEN2k

- Orientation dependence
- Beyond dipole selection rule
- Several broadening schemes
- All-electron

For EELS:

- Account for collection/convergence angle
- Output σ (E) or σ (θ)
- Relativistic ELNES (→ anisotropic materials)

EELS – Relativistic theory needed for anisotropic materials

Semi-relativistic theory :

 $\frac{\partial^2 \sigma}{\partial E \partial \Omega}(E, \mathbf{Q}) = \frac{4\gamma^2}{a_c^2} \frac{k'}{k} \frac{1}{O^4} \sum_{I, E} \left| \left\langle I \left| \mathbf{Q} \cdot \mathbf{r} \right| F \right\rangle \right|^2 \delta \left(E_I - E_F - E \right)$

Fully relativistic theory (P. Schattschneider et al., Phys. Rev. B 2005) : Up to leading order in c⁻² and using the Lorentz gauge : $V = e \Phi \left(1 - \frac{\boldsymbol{p} \cdot \boldsymbol{v}_{\theta}}{mc^2} \right) \quad \Phi = \frac{-4\pi e \,\delta \left(\omega - \boldsymbol{q} \cdot \boldsymbol{v}_{\theta} \right)}{q^2 - \omega^2/c^2}$ $\frac{\partial^2 \sigma}{\partial E \partial \Omega} (E, \boldsymbol{Q}) = \zeta \frac{k'}{k} \frac{1}{\left(Q^2 - E/\hbar c \right)^2} \sum_{I,F} \left| \left\langle I \left| \boldsymbol{r} \cdot \left(\boldsymbol{Q} - Q_z \beta^2 \boldsymbol{e}_z \right) \right| F \right\rangle \right|^2 \delta \left(E_I - E_F - E \right)$

Geometrical interpretation : in the dipole limit, a relativistic Hamiltonian shrinks the impuls transfer in the direction of propagation. (The general case is more complex.)

WIEN2k can also calculate non-dipole relativistic transitions. The equations are so long they make PowerPoint cry.

V=|r-r'|-1

 $m \rightarrow \gamma m$ $\theta_{\rm F} \rightarrow \theta_{\rm F rel}$

Beyond the small q approximation

The relativistic DDSCS :

$$\frac{\partial^2 \sigma}{\partial E \partial \Omega} = \left[\frac{4\gamma^2 a_0^{-2}}{q^2 - \left(\frac{E}{\hbar c}\right)^2} \right]^2 \frac{k_f}{k_i} \sum_{i,f} \left| \left\langle f \left| e^{iq \cdot r} \left(1 - \frac{\boldsymbol{v}_{\theta} \cdot \boldsymbol{p}}{m_e c^2} \right) \right| i \right\rangle \right|^2 \delta \left(E_f - E_i - E \right) \right|^2$$

$$\begin{split} &\left\{ \dot{i} \left| V \right| f \right\} = 4\pi \sum_{\lambda \mu} \sum_{lm} i^{\lambda} d_{lm}^{f^{*}} Y_{\lambda \mu}^{*} \left(\Omega_{q} \right) \left[t_{1} + i \sum_{a=2}^{5} t_{a} \right] \\ &= 4\pi \sum_{\lambda \mu} \sum_{lm} i^{\lambda} d_{lm}^{f^{*}} Y_{\lambda \mu}^{*} \left(\Omega_{q} \right) \left\{ \begin{cases} l & \lambda & l_{i} \\ -m & \mu & m_{i} \end{cases} \right\} \int j_{\lambda} u_{l} u_{i} + \frac{i \hbar v_{0}}{m_{e} c^{2}} \sqrt{\frac{4\pi}{3}} \int j_{\lambda} u_{l} \left(\frac{\partial u_{i}}{\partial r} - \frac{m_{i}}{r} u_{i} \right) \\ &\left[\begin{cases} l_{i} + 1 & l_{i} & 1 \\ -m_{i} & m_{i} & 0 \end{cases} \left\{ l & \lambda & l_{i} + 1 \\ -m_{i} & m_{i} & 0 \end{cases} + \left\{ l_{i} - 1 & l_{i} & 1 \\ -m_{i} & m_{i} & 0 \end{cases} \left\{ l & \lambda & l_{i} + 1 \\ -m_{i} & m_{i} & 0 \end{cases} + \left\{ l_{i} - 1 & l_{i} & 1 \\ -m_{i} & m_{i} & 0 \end{cases} + \left\{ l_{i} - 1 & l_{i} & 1 \\ -m_{i} & m_{i} & 0 \end{cases} + \left\{ l_{i} - 1 & l_{i} & 1 \\ -m_{i} & m_{i} & 0 \end{cases} + \left\{ l_{i} - 1 & l_{i} \\ -m_{i} & m_{i} & 0 \end{cases} + \left\{ l_{i} - 1 & l_{i} \\ -m_{i} & m_{i} & 0 \end{cases} + \left\{ l_{i} - 1 & l_{i} \\ -m_{i} & m_{i} & 0 \end{cases} + \left\{ l_{i} - 1 & l_{i} \\ -m_{i} & m_{i} & 0 \end{cases} + \left\{ l_{i} - 1 & l_{i} \\ -m_{i} & m_{i} & 0 \end{cases} + \left\{ l_{i} - 1 & l_{i} \\ -m_{i} & m_{i} & 0 \end{cases} + \left\{ l_{i} - 1 & l_{i} \\ -m_{i} & m_{i} & 0 \end{cases} + \left\{ l_{i} - 1 & l_{i} \\ -m_{i} & m_{i} & 0 \end{cases} + \left\{ l_{i} - 1 & l_{i} \\ -m_{i} & m_{i} & 0 \end{cases} + \left\{ l_{i} - 1 & l_{i} \\ -m_{i} & m_{i} & 0 \end{array} \right\} \right\} \end{split}$$

Relativistic spectra

Graphite C K for 3 tilt angles. Beam energy 300 keV, collection angle = 2.4mrad. Left: nonrelativistic calculation. Right: relativistic calculation.

Orientation dependence

graphite C K EELS

BN B K XAS

Spectrum as a function of energy loss

ć

Spectrum as a function of scattering angle

Left : L3 edge of Cr3C2

Right : the As L3 edge of NiAs (1324 eV) Calculated using WIEN2k+TELNES2

Just the double-differential CS

Double differential scattering cross-section (DDSCS)

Warning!

x DFT is a ground state theory !

- it should fail for the prediction of excited state properties
- however: for many systems it works pretty well

The core hole

ELECTRON MICROSCOPY FOR MATERIALS RESEARCH

Different ways of treating the core hole within WIEN2k

- No core hole (= ground state, sudden approximation)
- Z+1 approximation (eg., replace C by N)
- Remove 1 core electron, add 1 electron to conduction band
- Remove 1 core electron, add 1 electron as uniform background charge
- Fractional core hole: remove between 0 and 1 electron charge (e.g. 0.5)
- You may still get a bad result correct treatment requires a more advanced theory, e.g. BSE treats electron-hole interaction explicitly (gold standard).

Core hole calculations usually require a supercell !!! 29

Mg-K in MgO

- mismatch between experiment and simulation
- introduction of core hole or Z+1 approximation does not help
- interaction between neighbouring core holes
- → core hole in a supercell

Challenges of WIEN2k

- 1. Basis set only meant for limited energy range :
- forget about EXAFS/EXELFS
- sometimes adding a LO (case.in1) with a high linearization energy of 2.0 or 3.0 improves description of high-energy states.

2. Sometimes Final State Rule (core hole) DFT⁽ⁿ⁾ just isn't good enough and you need Bethe-Salpeter (BSE) calculations
•codes : OCEAN, AI2NBSE, Exc!ting, "BSE"
•much more expensive
•not as "polished" as DFT
•gets L3/L2 ratios right

Challenges of WIEN2k

- 3. Core hole supercell size can be hard to converge.
- size of the cell
- how much charge to remove?
- optimal treatment can differ between similar materials; or even different edges in same material

S. Lazar, C. Hébert, H. W. Zandbergen Ultramicroscopy 98, 2-4, 249 (2004)

32

Challenges of WIEN2k

4. Killing artifacts (unphysical monopoles) by "extending the RMT"

Documentation

- WIEN2k Users Guide!
- C. Hebert, Practical aspects of calculating EELS using the WIEN2k code, Ultramicroscopy, 2007
- Jorissen, Hebert & Luitz, submitting (<u>http://leonardo.phys.washington.edu/feff/papers/dissertations/</u> <u>thesis_jorissen.pdf</u> - Kevin' s Ph.D. thesis)

3. Hands-on exercises

- 1. XAS of K edge of Cu.
- 2. averaged EELS of N K edge of GaN.
- 3. orientation sensitive, in-plane and out-ofplane EELS of N K edge of GaN.
- 4. core hole calculation for Cu K-edge XAS & compare.
- 5. initialize a 2*2*2 supercell for TiC or TiN core hole EELS calculation.
- 6. Be K edge. Find the error.

Thank you:

- C. Hebert, J. Luitz, P. Schattschneider, and the TELNES team
- P. Blaha, K. Schwarz, and the WIEN2k team
- J. Rehr and the FEFF9 team
- WIEN2013 organizers