Localized Electrons with Wien2k LDA+U, EECE, MLWF, DMFT

Elias Assmann

Vienna University of Technology, Institute for Solid State Physics

WIEN2013@PSU, Aug 14

(ロ) (個) (差) (差)

一目

 298

LDA vs. Localized Electrons

- LDA/GGA has problems with strongly correlated systems
	- localized orbitals (3d, 4f)
- explicitly add "Coulomb interaction"
- \bigcirc LDA+U, EECE: add orbital-dependent potentials to LDA

KORKARA KERKER DAGA

- insulators
- **2** DMFT: build many-body theory on top of LDA
	- correlated metals
	- partially-filled bands
	- Wannier functions as basis

The Hubbard Model

single-band Hubbard model:

$$
H = -t \sum_{\langle ij \rangle \sigma} c^+_{i\sigma} c_{j\sigma} + U \sum_i \widehat{n}_{i\uparrow} \widehat{n}_{i\downarrow}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

- \bullet "hopping" t (kinetic energy)
- \bullet interaction U

The Hubbard Model

single-band Hubbard model:

$$
H = -t \sum_{\langle ij \rangle \sigma} c^+_{i\sigma} c_{j\sigma} + U \sum_i \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}
$$

- \bullet "hopping" t (kinetic energy)
- \bullet interaction U

multi-band generalization:

$$
U\widehat{n}_1\widehat{n}_1 \rightarrow \sum_{ijkl} U_{ijkl} c^+_i c^+_j c_l c_k
$$

often parametrized with: intra-orbital U_i , inter-orbital V, Hund exchange J

Strontium Vanadate SrVO₃

- correlated metal
- cubic perovskite
	- VO₆ octahedra
- isolated t^1_{2g} manifold

 4 ロ) 4 6) 4 \Rightarrow 3 \Rightarrow 4 \Rightarrow 3

÷,

 299

Outline

K ロ ▶ K 레 ▶ K 호 ▶ K 호 ▶ → 호 → 10 Q Q

n [Preliminaries](#page-1-0)

² LDA+U[, EECE — Orbital-Dependent Potentials](#page-5-0) [LDA + Coulomb Repulsion](#page-6-0) U [On-Site Hybrid/Hartree-Fock](#page-12-0)

3 [Wannier Functions and DMFT](#page-16-0)

LDA + Coulomb Repulsion U (-orb)

- split states into
	- "delocalized" _→ LDA
	- "localized" _→ LDA+U (usually, *d* or *f* states)
- augment LDA with local orbital-dependent energy:

$$
E = E^{LDA} + \frac{1}{2}U \sum_{i \neq j} n_i n_j - \frac{1}{2}UN(N-1)
$$

mean-field Hubbard term)
(multi-band)
(LDA contains part of *U*)
 $\hat{n}_i \rightarrow n_i = \langle \hat{n}_i \rangle$

[Anisimov et al., Phys. Rev. B 48, 16929 (1993)]

KORKARA KERKER DAGA

LDA+U: Effects

$$
E = E^{\text{LDA}} + \frac{1}{2}U\sum_{i\neq j}n_i n_j - \frac{1}{2}UN(N-1)
$$

• orbital energies
$$
\epsilon_i = \frac{\partial E}{\partial n_i} = \epsilon_i^{LDA} + U(1/2 - n_i)
$$

- **⇒** unoccupied states **↑**, occupied states **↓**
	- **creates / enlarges gaps (** \rightarrow **Mott insulators)**
	- **breaks symmetries (** \rightarrow **spin order, orbital order, ...)**

LDA+U: Practicalities

- **conceptually simple, computationally cheap**
- ambiguities in practice:
- *U* values?
	- - enforce occupation of target orbital
		- U **∼** ∆Etot
- **double-counting correction**
	- 0 "around mean-field", $\frac{1}{2}$ **FCzyżyk and Sawatzky, PRB 1994]** metallic or less strongly correlated
	- **1 "self-interaction correction",** $\frac{1}{2}$ **UN(N 1)** [Anisimov et al., PRB 1993] strongly correlated systems

2 "HMF" [Anisimov et al., PRB 1991]

•• constrained LDA b interval in the IMadsen and Novák, wien2k, at 1

KORKARA KERKER DAGA

LDA+U: Program Flow

must be spin-polarized

lapwdm density matrix $n_{ii} = \langle \hat{n}_i \hat{n}_i \rangle$ (case.dmatup,dn) orb LDA+U potential (case.vorbup,dn) $lapw1$ -orb includes $LDA+U$ potential

runsp -orb lapw0 orb -up,dn lapw1 -orb -up,dn lapw2 -up,dn lapwdm -up, dn lcore -up, dn mixer -orb

KORKA SERVER ORA

LDA+U: Program Flow

lapwdm density matrix $n_{ii} = \langle \hat{n}_i \hat{n}_i \rangle$ (case.dmatup,dn) orb LDA+U potential (case.vorbup,dn) $lapw1$ -orb includes $LDA+U$ potential

runsp -orb lapw0 orb -up,dn lapw1 -orb -up,dn lapw2 -up, dn lapwdm -up, dn lcore -up, dn mixer -orb

case.inorb

LDA+U: SrVO₃

メロトメ 御 トメ 差 トメ 差 ト 重

 299

On-Site Hybrid Functionals (-eece)

- **•** split states as in LDA+U → ρ_{sel} , ψ_{sel}
- What's in a name?
	- "exact exchange for correlated electrons"
	- on-site hybrid/Hartree-Fock vs. full hybrid
- augment LDA with local orbital-dependent energy:
	- on-site hybrid

$$
E = E^{LDA}[\rho] + \alpha \big(E_{\mathbf{x}}^{HF}[\Psi_{\text{sel}}] - E_{\mathbf{x}}^{LDA}[\rho_{\text{sel}}] \big)
$$

on-site Hartree-Fock

$$
E = E^{LDA}[\rho] + \alpha (E_{\mathbf{x}}^{HF}[\Psi_{\text{sel}}] - E_{\text{xc}}^{LDA}[\rho_{\text{sel}}])
$$

• must choose α ; $E_{\text{xc}}[\rho]$ is not linear

[Novák et al. Phys. Stat. Sol. B 243, 563 (2006)]

KORKA SERVER ORA

[Tran, Blaha, Schwarz, and Novák, Phys. Rev. B 74, 155108 (2006)]

EECE: Program Flow

must be spin-polarized

lapwdm density matrix $n_{ij} = \langle \hat{n}_i \hat{n}_j \rangle$ (case.dmatup,dn) lapw2, lapw0, orb EECE potential (case.vorbup,dn) lapw1 -orb includes EECE potential

runsp -eece

KORKARA KERKER DAGA

EECE: Program Flow

runsp -eece

KORKARA KERKER DAGA

must be spin-polarized

lapwdm density matrix $n_{ii} = \langle \hat{n}_i \hat{n}_i \rangle$ (case.dmatup,dn) lapw2, lapw0, orb EECE potential (case.vorbup,dn)

lapw1 -orb includes EECE potential

case.ineece

- -9.0 1 Emin [Ry], #atoms
- 2 1 2 iatom nlorb lorb
- HYBR HYBR/EECE mode

 0.25α

case.inorb, case.indm[c]

(generated automatically)

EECE: SrVO³

メロトメ 伊 トメ き トメ きょ 重

 299

Outline

K ロ ▶ K 레 ▶ K 회 ▶ K 회 ▶ │ 회 │ ⊙ Q Q ⊙

n [Preliminaries](#page-1-0)

² LDA+U[, EECE — Orbital-Dependent Potentials](#page-5-0)

³ [Wannier Functions and DMFT](#page-16-0) [Maximally Localized Wannier Functions](#page-17-0) [Wannier90](#page-22-0) [Wien2Wannier](#page-23-0) [Dynamical Mean-Field Theory at a Glance](#page-26-0)

Wannier Functions

from Marzari et al.

 Fourier transforms of Bloch functions:

$$
|w \, nR\rangle = \frac{V}{(2\pi)^3} \int_{BZ} d\mathbf{k} \, e^{i\mathbf{k} \mathbf{R}} \, |\psi \, n\mathbf{k}\rangle
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① Q @

Wannier Functions

from Marzari et al.

 Fourier transforms of Bloch functions:

$$
|w \, nR\rangle = \frac{V}{(2\pi)^3} \int_{BZ} d\mathbf{k} \, e^{i\mathbf{k} \mathbf{R}} \, |\psi \, n\mathbf{k}\rangle
$$

"gauge" freedom:

 $|w \, nR\rangle =$

$$
\frac{v}{(2\pi)}\int\limits_{\text{BZ}}\text{d}\bm{k}\,\sum\limits_{m}\text{e}^{\text{i}\bm{k}\bm{R}}\,U_{mn}(\bm{k})\,|\psi\,m\bm{k}\rangle
$$

 \rightarrow choose $U(\mathbf{k})$ to minimize spread **〈**∆**r** 2 **〉**

KORK STRAIN A STRAIN A STRAIN

Maximally Localized Wannier Functions

- choose $U(\mathbf{k})$ to minimize spread \rightarrow MLWF
- total spread $\Omega = \Omega_1 + \widetilde{\Omega}$ can be split into gauge-invariant part and rest

KORKARA KERKER DAGA

- **→** minimize \tilde{O}
	- \bullet wannier90 computes $U(\mathbf{k})$ in this way

[Marzari et al., Rev. Mod. Phys. 84, 1419 (2012)] <http://wannier.org>

vien2wannier provides interface to Wien2k

[Kuneš, Wissgott et al., Comp. Phys. Commun. 181, 1888] http://www.wien2k.at/reg_user/unsupported/wien2wannier/

Disentanglement

from Marzari et al.

fcc-Cu, 5 d-like WF, 2 interstitial s-like WF

 num bands = 12 num wann $=$ 7

- other bands may cross target manifold
- must select bands to Wannierize
	- $V(\mathbf{k})$ $(f(\mathbf{k}) \times N)$
	- selection determines Ω

KORK STRAIN A STRAIN A STRAIN

 \rightarrow minimize also Ω_I

MLWF: Applications

- analysis of chemical bonding
- **·** electric polarization and orbital magnetization Oleg Rubel's talk (tomorrow, 10:30)
- Wannier interpolation $K \rightarrow G$ $H(\mathbf{k})|_{\mathcal{K}} \stackrel{\mathcal{F}}{\longrightarrow} H(\mathbf{R})|_{\mathcal{K}^{-1}} \stackrel{\mathcal{F}^{-1}}{\longrightarrow} H(\mathbf{k})|_{\mathcal{G}}$
- Wannier functions as basis functions
	- tight-binding model $H(\mathbf{k}) = U^+(\mathbf{k}) \, \epsilon(\mathbf{k}) \, U(\mathbf{k})$
	- **••** realistic dynamical mean-field theory (DMFT)

KORKAR KERKER DRAM

wannier90

case.win

dis_froz_min = 7. dis_froz_max = 9.

 $bands_plot_project = 1$

[Marzari et al., Rev. Mod. Phys. 84, 1419 (2012)] <http://wannier.org>

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

wien2wannier

[Kuneš, Wissgott et al., Comp. Phys. Commun. 181, 1888] http://www.wien2k.at/reg_user/unsupported/wien2wannier/

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

MLWF: Program FLow

⁰ normal SCF run **−→** converged density, band structure

KORKA SERVER ORA

- \bullet prepare_w2wdir.sh, init_w2w: prepare input files
- **2** x lapw1 -options → eigenvectors on full k-mesh
- ³ w2w case **−→** overlap **〈**um**k|**un**k〉**
- 4 shift_energy case
- ⁵ wannier90.x case **−→** U(**k**)

wien2wannier Features

- spin-polarized cases, spin-orbit coupling
- any functional, LAPW, APW+LO basis
- disentanglement
- plotting: interface to XCrysDen / VESTA
- **woptic: optical conductivity with Wannier functions**

$$
\sigma(\Omega) \sim \sum_{\mathbf{k},\omega} \frac{f(\omega)-f(\omega+\Omega)}{\Omega} \text{ tr } \{ VA(\mathbf{k},\omega+\Omega)VA(\mathbf{k},\omega) \}
$$

- adaptive k-integration
- includes self-energy $\Sigma(\omega)$ (DMFT)

http://www.wien2k.at/reg_user/unsupported/wien2wannier/

[Wissgott, Kunes̆ *et al. Phys. Rev. B 85, 205133]*

KORKA SERVER ORA

LDA+DMFT

LDA

- realistic calculations
- fails for strong correlations

model Hamiltonians

- simplified, abstract model
- full correlations

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 10 Q Q

LDA+DMFT

Correlation Regimes

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ - 할 → 9 Q @

From lattice models to DMFT

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

lattice model

- e **[−]** hop between sites
- local repulsion (screened)

From lattice models to DMFT

Σ **U**

lattice model

- e **[−]** hop between sites
- local repulsion (screened)

impurity model

- one interacting site
- non-interacting "bath"

KORK STRAIN A STRAIN A STRAIN

From lattice models to DMFT

Σ **U**

lattice model

- e **[−]** hop between sites
- local repulsion (screened)

impurity model

- one interacting site
- non-interacting "bath"

dynamical mean-field theory

- \bullet lattice model **7→** impurity model
- self-energy $\Sigma(\omega)$

Georges et al., RMP 1996, Kotliar & Vollhardt, Phys. Today 2004

◆ロト→何ト→ヨト→ヨト ヨー

 2990

LDA+DMFT for SrVO₂

- DMFT basis: 3 degenerate t_{2g} Wannier functions
- \bullet $U = 5.05 \,\text{eV}$, $T = 1160 \,\text{K}$
	- DMFT(QMC) has finite T
	- \bullet low T is hard ("sign problem")

experiment: Makino et al., PRB 58, 4348 (1997) DMFT: Philipp Wissgott

LDA+U, EECE, DMFT compared

LDA+U, EECE

- density functionals
	- single-particle model
- good for insulators ($U \gg W$)
- work inside MT sphere basis: Y_l^m l
- computationally cheap

LDA+DMFT

- "spectral density functional theory"
	- many-body physics
- basis: Wannier functions (or similar)
- whole U/W range
- sophisticated, expensive
- double counting
- semi-empirical U , $α$

- double counting
- \bullet semi-empirical U