Localized Electrons with Wien2k LDA+U, EECE, MLWF, DMFT

Elias Assmann

Vienna University of Technology, Institute for Solid State Physics

WIEN2013@PSU, Aug 14

LDA vs. Localized Electrons

LDA/GGA has problems with strongly correlated systems

- localized orbitals (3d, 4f)

1 LDA+U, EECE: add orbital-dependent potentials to LDA

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

- insulators
- 2 DMFT: build many-body theory on top of LDA
 - correlated metals
 - partially-filled bands
 - Wannier functions as basis

The Hubbard Model

single-band Hubbard model:

$$H = -t \sum_{\langle ij \rangle \sigma} c_{i\sigma}^+ c_{j\sigma} + U \sum_i \widehat{n}_{i\uparrow} \widehat{n}_{i\downarrow}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二直 - のへで

- "hopping" t (kinetic energy)
- interaction U

The Hubbard Model

single-band Hubbard model:

$$H = -t \sum_{\langle ij \rangle \sigma} c_{i\sigma}^+ c_{j\sigma} + U \sum_i \widehat{n}_{i\uparrow} \widehat{n}_{i\downarrow}$$

- "hopping" t (kinetic energy)
- interaction U

multi-band generalization:

$$U \widehat{n}_{\uparrow} \widehat{n}_{\downarrow} \rightarrow \sum_{ijkl} U_{ijkl} c_i^+ c_j^+ c_l c_k$$

often parametrized with: intra-orbital *U*, inter-orbital *V*, Hund exchange *J*

Strontium Vanadate SrVO₃

- correlated metal
- cubic perovskite
 - VO₆ octahedra
- isolated t¹_{2g} manifold

Outline

▲ロト ▲御ト ▲ヨト ▲ヨト 三国 - のへで

Preliminaries

LDA+U, EECE — Orbital-Dependent Potentials LDA + Coulomb Repulsion U On-Site Hybrid/Hartree-Fock

3 Wannier Functions and DMFT

LDA + Coulomb Repulsion U (-orb)

- split states into
 - "delocalized" → LDA
 - "localized" ->> LDA+U (usually, d or f states)
- augment LDA with local orbital-dependent energy:

$$E = E^{\text{LDA}} + \underbrace{\frac{1}{2}U\sum_{i \neq j}n_in_j}_{i \neq j} - \underbrace{\frac{1}{2}UN(N-1)}_{\text{double-counting correction}}$$

(multi-band)
(nulti-band)
(LDA contains part of U)
(n_i \rightarrow n_i = \langle \hat{n}_i \rangle

[Anisimov et al., Phys. Rev. B 48, 16929 (1993)]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

LDA+U: Effects

$$E = E^{\text{LDA}} + \frac{1}{2}U\sum_{i\neq j}n_in_j - \frac{1}{2}UN(N-1)$$

• orbital energies
$$\epsilon_i = \frac{\partial E}{\partial n_i} = \epsilon_i^{\text{LDA}} + U(\frac{1/2 - n_i}{2})$$

- ⇒ unoccupied states ↑, occupied states ↓
 - creates / enlarges gaps (--- Mott insulators)

LDA+U: Practicalities

- conceptually simple, computationally cheap
- ambiguities in practice:
- U values?
 - - enforce occupation of target orbital
 - $U \sim \Delta E_{tot}$
- double-counting correction
 - 0 "around mean-field", $\frac{1}{2}UN(N \bar{n})$ [Czyżyk and Sawatzky, PRB 1994] metallic or less strongly correlated
 - 1 "self-interaction correction", $\frac{1}{2}UN(N-1)$ [Anisimov *et al.*, PRB 1993] strongly correlated systems

2 "HMF"

[Anisimov et al., PRB 1991]

[Madsen and Novák, wien2k.at]

うせん 川田 (山田) (山) (山) (山)

LDA+U: Program Flow

must be spin-polarized

lapwdm density matrix $n_{ij} = \langle \hat{n}_i \hat{n}_j \rangle$ (case.dmatup,dn) orb LDA+U potential (case.vorbup,dn) lapw1 -orb includes LDA+U potential runsp -orb lapw0 orb -up,dn lapw1 -orb -up,dn lapw2 -up,dn lapwdm -up,dn lcore -up,dn mixer -orb

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

LDA+U: Program Flow

• must be	e spin-polarized
lapwdm	density matrix $n_{ij} = \langle \widehat{n}_i \widehat{n}_j \rangle$
	(<i>case</i> .dmat <i>up,dn</i>)
orb	LDA+U potential
	(<i>case</i> .vorb <i>up,dn</i>)
lapw1 -orb	includes LDA+U potential

المتحاج والمتحاج والمتحد والمتحد

runsp -orblapw0orb-up, dnlapw1 -orb-up, dnlapw2-up, dnlcore-up, dnmixer -orb

<pre>case.indm[c]</pre>	
-9. Emin [Ry] 1 #atoms 2 1 2 atom, #l, l 0 0 mode	

case.inorb

1 1 0 m	ode, #atoms, ipr
PRATT 1.0	mixing
212	atom, #l, l
1	double-counting
0.26 0.00	U,J [Ry] (Ueff=U-J)

LDA+U: SrVO₃

≣ ໑໑

(日) (四) (日) (日) (日)

On-Site Hybrid Functionals (-eece)

- split states as in LDA+ $U \rightarrow \rho_{sel}, \Psi_{sel}$
- What's in a name?
 - "exact exchange for correlated electrons"
 - on-site hybrid/Hartree-Fock vs. full hybrid
- augment LDA with local orbital-dependent energy:
 - on-site hybrid

$$E = E^{\text{LDA}}[\rho] + \alpha \left(E_{\text{x}}^{\text{HF}}[\Psi_{\text{sel}}] - E_{\text{x}}^{\text{LDA}}[\rho_{\text{sel}}] \right)$$

• on-site Hartree-Fock

$$E = E^{\text{LDA}}[\rho] + \alpha(E_{\text{x}}^{\text{HF}}[\Psi_{\text{sel}}] - E_{\text{xc}}^{\text{LDA}}[\rho_{\text{sel}}])$$

• must choose α ; $E_{xc}[\rho]$ is not linear

[Novák et al. Phys. Stat. Sol. B 243, 563 (2006)]

(日) (日) (日) (日) (日) (日) (日) (日)

[Tran, Blaha, Schwarz, and Novák, Phys. Rev. B 74, 155108 (2006)]

EECE: Program Flow

• must be spin-polarized lapwdm density matrix $n_{ij} = \langle \hat{n}_i \hat{n}_j \rangle$ (*case*.dmat*up*,*dn*) lapw2, lapw0, orb EECE potential (*case*.vorb*up*,*dn*)

lapw1 -orb includes EECE potential

runsp -eece

lapw0	
lapw1 -orb	-up,dn
lapw2	-up,dn
lcore	-up,dn
lapwdm	-up,dn
lapw2 -eece	-up,dn
lapw0 -eece	
orb	-up,dn
<pre>mixer -eece</pre>	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

EECE: Program Flow

runsp -eece

lapw0	
lapw1 -orb	-up,dn
lapw2	-up,dn
lcore	-up,dn
lapwdm	-up,dn
lapw2 -eece	-up,dn
lapw0 -eece	
orb	-up,dn
mixer -eece	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

must be spin-polarized

lapwdm density matrix $n_{ij} = \langle \hat{n}_i \hat{n}_j \rangle$ (*case*.dmat*up*,*dn*) lapw2, lapw0, orb EECE potential (*case*.vorb*up*,*dn*) lapw1 -orb includes EECE potential

case.ineece

- -9.0 1 Emin [Ry], #atoms
- 2 1 2 iatom nlorb lorb
- HYBR HYBR/EECE mode

0.25 α

case.inorb, case.indm[c]

(generated automatically)

EECE: SrVO₃

▲ロト ▲舂 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

Outline

▲ロト ▲御ト ▲ヨト ▲ヨト 三国 - のへで

Preliminaries

2 LDA+U, EECE — Orbital-Dependent Potentials

 Wannier Functions and DMFT Maximally Localized Wannier Functions Wannier90 Wien2Wannier Dynamical Mean-Field Theory at a Glance

Wannier Functions

from Marzari et al.

• Fourier transforms of Bloch functions:

$$|\mathbf{w} n\mathbf{R}\rangle = \frac{V}{(2\pi)^3} \int_{BZ} d\mathbf{k} e^{i\mathbf{k}\mathbf{R}} |\psi n\mathbf{k}\rangle$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Wannier Functions

from Marzari et al.

• Fourier transforms of Bloch functions:

$$|w n\mathbf{R}\rangle = \frac{V}{(2\pi)^3} \int_{BZ} d\mathbf{k} e^{i\mathbf{k}\mathbf{R}} |\psi n\mathbf{k}\rangle$$

• "gauge" freedom:

 $|wn\mathbf{R}\rangle =$

$$\frac{V}{(2\pi)} \int_{\mathsf{BZ}} \mathrm{d}\boldsymbol{k} \sum_{m} \mathrm{e}^{\mathrm{i}\boldsymbol{k}\boldsymbol{R}} U_{mn}(\boldsymbol{k}) | \psi \, \boldsymbol{m} \boldsymbol{k} \rangle$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

→ choose $U(\mathbf{k})$ to minimize spread ($\Delta \mathbf{r}^2$)

Maximally Localized Wannier Functions

- choose U(k) to minimize spread → MLWF
- total spread $\Omega = \Omega_1 + \tilde{\Omega}$ can be split into gauge-invariant part and rest

- 🛶 minimize <u>Ω</u>
 - wannier90 computes U(k) in this way

[Marzari et al., Rev. Mod. Phys. 84, 1419 (2012)] http://wannier.org

wien2wannier provides interface to Wien2k

[Kuneš, Wissgott *et al.*, Comp. Phys. Commun. 181, 1888] http://www.wien2k.at/reg_user/unsupported/wien2wannier/

Disentanglement

from Marzari et al.

fcc-Cu, 5 *d*-like WF, 2 interstitial *s*-like WF

num_bands = 12
num_wann = 7

- other bands may cross target manifold
- must select bands to Wannierize
 - $V(\mathbf{k}) (J(\mathbf{k}) \times N)$
 - selection determines $\Omega_{\rm I}$

MLWF: Applications

- analysis of chemical bonding
- electric polarization and orbital magnetization
 Oleg Rubel's talk (tomorrow, 10:30)
- Wannier interpolation $\mathcal{K} \to \mathcal{G}$ $H(\mathbf{k})|_{\mathcal{K}} \xrightarrow{\mathcal{F}} H(\mathbf{R})|_{\mathcal{K}^{-1}} \xrightarrow{\mathcal{F}^{-1}} H(\mathbf{k})|_{\mathcal{G}}$
- Wannier functions as basis functions
 - tight-binding model $H(\mathbf{k}) = U^+(\mathbf{k}) \epsilon(\mathbf{k}) U(\mathbf{k})$

wannier90

case.win

num_bands	=	3
num_wann	=	3
num_iter	=	1000
<pre>num_print_cycles</pre>	=	100

bands_plot_project = 1

<i>case</i> .wout	
Final State	
WF centre and spread 1 .	
WF centre and spread 2 .	• •
WF centre and spread 3 .	• •
Sum of centres and spread .	• •

[Marzari et al., Rev. Mod. Phys. 84, 1419 (2012)] http://wannier.org

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

wien2wannier

case.v	v2win	
BOTH		
21 23	3 min band, m	nax band
3 3	B LJMAX, #Wan	nnier functions
2	#terms	
22-2	2 0.00000000	0.70710677 atom, L, M, coeff
222	2 0.0000000	-0.70710677
2		
22-2	1 0.00000000	0.70710677
22	1 0.0000000	0.70710677
2		
22-2	1 0.70710677	0.0000000
22	1 -0.70710677	0.0000000

[Kuneš, Wissgott *et al.*, Comp. Phys. Commun. 181, 1888] http://www.wien2k.at/reg_user/unsupported/wien2wannier/

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへで

MLWF: Program FLow

() normal SCF run \rightarrow converged density, band structure

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

- prepare_w2wdir.sh, init_w2w: prepare input files
- 2 x lapw1 -options \rightarrow eigenvectors on full k-mesh
- **3** w2w case \rightarrow overlap $\langle u_{mk} | u_{nk} \rangle$
- 4 shift_energy case
- **5** wannier90.x case $\rightarrow U(\mathbf{k})$

wien2wannier Features

- spin-polarized cases, spin-orbit coupling
- any functional, LAPW, APW+LO basis
- disentanglement
- plotting: interface to XCrysDen / VESTA
- woptic: optical conductivity with Wannier functions

$$\sigma(\Omega) \sim \sum_{\boldsymbol{k},\omega} \frac{f(\omega) - f(\omega + \Omega)}{\Omega} \operatorname{tr} \{ VA(\boldsymbol{k}, \omega + \Omega) VA(\boldsymbol{k}, \omega) \}$$

- adaptive k-integration
- includes self-energy $\Sigma(\omega)$ (DMFT)

http://www.wien2k.at/reg_user/unsupported/wien2wannier/

[Wissgott, Kuneš et al. Phys. Rev. B 85, 205133]

LDA+DMFT

LDA

- realistic calculations
- fails for strong correlations

model Hamiltonians

- simplified, abstract model
- full correlations

LDA+DMFT

Correlation Regimes

U: screened local interaction

W: bandwidth, $\sim t$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

From lattice models to DMFT

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

lattice model

- e⁻ hop between sites
- local repulsion (screened)

From lattice models to DMFT

Σ

lattice model

- e⁻ hop between sites
- local repulsion (screened)

impurity model

- one interacting site
- non-interacting "bath"

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

From lattice models to DMFT

Σ

lattice model

- e⁻ hop between sites
- local repulsion (screened)

impurity model

- one interacting site
- non-interacting "bath"

dynamical mean-field theory

- lattice model → impurity model
- self-energy $\Sigma(\omega)$

Georges et al., RMP 1996, Kotliar & Vollhardt, Phys. Today 2004

LDA+DMFT for SrVO₃

- DMFT basis: 3 degenerate t_{2g} Wannier functions
- *U* = 5.05 eV, *T* = 1160 K
 - DMFT(QMC) has finite T
 - low T is hard ("sign problem")

experiment: Makino et al., PRB 58, 4348 (1997) DMFT: Philipp Wissgott

LDA+U, EECE, DMFT compared

LDA+U, EECE

- density functionals
 - single-particle model
- good for insulators $(U \gg W)$
- work inside MT sphere basis: Y^m_l
- computationally cheap

LDA+DMFT

- "spectral density functional theory"
 - many-body physics
- basis: Wannier functions (or similar)
- whole U/W range
- sophisticated, expensive

- double counting
- semi-empirical U, α

- double counting
- semi-empirical U