Optical Properties with Wien2k

Elias Assmann

Vienna University of Technology, Institute for Solid State Physics

WIEN2013@PSU, Aug 13

Menu

Theory
 Screening in a solid
 Calculating ε: Random-Phase Approximation

2 Practical Calculations

optic: Momentum Matrix Elements
joint: Imaginary Part of Dielectric Tensor
kram: Derived Quantities

B Examples

Ambrosch-Draxl and Sofo, Comp. Phys. Commun. 175, 1 (2006)

Appetizer

refractive index

absorption coefficient $\alpha_{ii} = 2\omega k/c$

energy loss function $L_{ij} = - \operatorname{Im}(\varepsilon^{-1})_{ij}$

reflectivity

 $\operatorname{Im} \varepsilon_{ij}(\omega) \Rightarrow$

sum rules

optical conductivity $\operatorname{Re} \sigma_{ij} = \frac{\omega}{4\pi} \operatorname{Im} \varepsilon_{ij}$ $n_{jj} = \sqrt{(|\varepsilon_{jj}| + \operatorname{Re} \varepsilon_{jj})/2}$ extinction coefficient $k_{ii} = \sqrt{(|\epsilon_{ii}| - \text{Re}\epsilon_{ii})/2}$ $R_{ii} = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2}$ $N_{\rm eff} = \int_{0}^{\omega} \mathrm{d}\omega' \,\mathrm{Im}\,\varepsilon(\omega')$

Screening

Consider a test charge Q in a solid:

$$V(\boldsymbol{r}-\boldsymbol{r'})=\frac{-Q}{|\boldsymbol{r}-\boldsymbol{r'}|} \iff V(\boldsymbol{q})=-\frac{4\pi Q}{\boldsymbol{q}^2}$$

e⁻ will move to screen the charge \rightarrow effective potential *W*; dielectric function (" $V = \varepsilon W$ "

Simplest model: Thomas-Fermi

$$W(\mathbf{r}) = \frac{\mathrm{e}^{-\mathbf{k}_{\mathrm{TF}}\mathbf{r}}}{\mathbf{r}} \iff W(\mathbf{q}) = \frac{4\pi}{\mathbf{k}_{\mathrm{TF}}^2 + \mathbf{q}^2}$$

Ansatz for W

$$W \sim \int \mathrm{d} \boldsymbol{r}' \mathrm{d} t \, \varepsilon^{-1}(\boldsymbol{r}'; t) \, \boldsymbol{V}(\boldsymbol{r} - \boldsymbol{r}'; t - t')$$

Bare $V(\mathbf{r}, \mathbf{r}'; t, t') = V(\mathbf{r} - \mathbf{r}')\delta(t - t')$ is translation invariant and instantaneous

Response depends on position in unit cell, is retarded

$$W_{\boldsymbol{R}}(\boldsymbol{d}, \boldsymbol{d}'; t) = \sum_{\boldsymbol{\tilde{R}}} \int d\boldsymbol{d}_1 d\boldsymbol{d}_2 \ \boldsymbol{\varepsilon}^{-1}_{\boldsymbol{\tilde{R}}}(\boldsymbol{d}_1, \boldsymbol{d}_2; t)$$
$$\cdot \boldsymbol{V}(\boldsymbol{R} + \boldsymbol{d} - \boldsymbol{d}' - [\boldsymbol{d}_1 - \boldsymbol{d}_2 - \boldsymbol{\tilde{R}}])$$

The Dielectric Function

$$W_G(\boldsymbol{q},\omega) = \sum_{\boldsymbol{G'}} \varepsilon^{-1}_{\boldsymbol{GG'}}(\boldsymbol{q},\omega) \ V_{\boldsymbol{G'}}(\boldsymbol{q},\omega)$$

light is long-wavelength:

$$W_G(\boldsymbol{q},\omega) \approx \varepsilon^{-1} \mathbf{G0}(\boldsymbol{q},\omega) \; V_{\mathbf{0}}(\boldsymbol{q},\omega)$$

"macroscopic" ε (u.c. average):

$$W(\boldsymbol{q},\omega) = \varepsilon^{-1}_{\mathbf{00}}(\boldsymbol{q},\omega) \ V_{\mathbf{0}}(\boldsymbol{q},\omega)$$

$$\boldsymbol{\eta}(\boldsymbol{q},\omega) = rac{1}{\varepsilon^{-1} \mathbf{00}(\boldsymbol{q},\omega)}$$

εN

 $G'=0, q \rightarrow 0$

G

 $\boldsymbol{k} = \boldsymbol{G} + \boldsymbol{q}$

neglect local-field effects:

 $\varepsilon_{\mathsf{M}}(\boldsymbol{q},\omega) \approx \varepsilon_{\mathbf{00}}(\boldsymbol{q},\omega)$

Calculating *ɛ*: The RPA

$$V(\boldsymbol{q}) = \varepsilon(\boldsymbol{q}, \omega) W(\boldsymbol{q}, \omega)$$

- Poisson: $\boldsymbol{q}^2 W = 4\pi (-\boldsymbol{Q} + \delta n) \quad \leftrightarrow \quad W = \boldsymbol{V} + \frac{4\pi}{\boldsymbol{q}^2} \delta n$
- linear response: $\delta n = \chi V P W \rightarrow V = (1 \frac{4\pi}{q^2} P) W$
- "random-phase" approximation: P to lowest order

Intra- and Interband transitions

intraband: Drude model, $(\omega_p: \text{ plasma frequency})$

$$\textrm{Im}\, \varepsilon^{\textrm{intra}} = \frac{\Gamma {\omega_{\textrm{p}}}^2}{\omega \left(\omega^2 + \Gamma^2\right)}$$

interband:

joint density of states:

Symmetry Constraints

 $\varepsilon_{ij} = \varepsilon_{ji}$ is always symmetric.

Additional constraints from crystal symmetry:

 $\varepsilon = U^{-1} \varepsilon U$

cubic		0 1	$\begin{pmatrix} 0\\0\\1 \end{pmatrix}$				
tetragonal, trigonal, hexagonal	$\begin{pmatrix} 1 \\ \end{pmatrix}$	0 1	$\begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$	orthorhombic	$\begin{pmatrix} 1 \\ \end{pmatrix}$	0 2	0 0 3)
monoclinic		4 2	$\begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$	triclinic	$\begin{pmatrix} 1 \\ \end{pmatrix}$	4 2	5 6 3)

Program Flow

lapw1 Kohn-Sham eigenstates

optic momentum matrix elements (case.symmat)

joint imaginary part of dielectric tensor (case.joint)

kram derived quantities

• Kramers-Kronig

Re
$$\varepsilon_{ij} = \delta_{ij} + \frac{2}{\pi} \mathcal{P} \int_0^\infty d\Omega \ \frac{\Omega}{\Omega^2 - \omega^2} \ \text{Im} \, \varepsilon_{ij}$$

---- all optical constants

optic: Momentum Matrix Elements

core-level spectra: Kevin Jorissen's lecture tomorrow 10:30

optic: Input and Output

case.inop				
999991#k-points, 1st k-point-5.0 3.0 9999Emin Emax [Ry], NBvalMAX2#indep. elements (symmetry/SOC)1Re xx3Re zz0FF 3write mommat2?, #spheres1 2 3spheres to sum over				
symmetry		spin-orbit		
1: Re(<i>xx</i>) 4: Re(<i>xy</i>) 2: Re(<i>yy</i>) 5: Re(<i>xz</i>) 3: Re(<i>zz</i>) 6: Re(<i>yz</i>)		7: Im(<i>xy</i>) 8: Im(<i>xz</i>) 9: Im(<i>yz</i>)		
case.symmat		case.mommat2 (if ON)		
$\langle v \boldsymbol{k} \hat{p}_i c \boldsymbol{k} \rangle \langle c \boldsymbol{k} \hat{p}_j v \boldsymbol{k} \rangle$		$\langle v \boldsymbol{k} \hat{p}_i c \boldsymbol{k} \rangle$		

joint: $Im(\varepsilon)$, (Joint) Density of States

<pre>case.injoint</pre>	
1 9999 9999	lower, upper, upper-val bandindex
0.0 .001 1.0	Emin (≥ 0), dE, Emax [Ry]
eV	units [eV / ryd / cm-1]
4	mode
2	<pre>#indep. elements</pre>
0.1 0.1	broadenings Γ for Drude (mode=6,7)

$$\begin{array}{c} case.joint\\ \lim \varepsilon_{ij}\\ \rho \end{array} \right\} \sim \sum_{c,v} \int d\mathbf{k} \,\delta\big(\epsilon_c(\mathbf{k}) - \epsilon_v(\mathbf{k}) - \omega\big) \begin{cases} \langle c\mathbf{k} | \hat{p}_i | v\mathbf{k} \rangle \,\langle v\mathbf{k} | \hat{p}_j | c\mathbf{k} \rangle \\ 1 \end{cases}$$

joint: Modes of Operation

kram: Kramers-Kronig Analysis

case.inkram		
0.1	interband broadening	
0.0	energy shift (scissors operator)	
1	add intraband contributions? 1/0	
12.6 12.6	plasma frequencies (joint, mode=6)	
0.1 0.1	broadenings $arGamma$ for Drude models	

output		
 case.epsilon Reε, Imε 	• <i>case</i> .absorp Re <i>σ,α</i>	• <i>case</i> .reflectivity <i>R</i>
 case.sigmak Re σ, Im σ 	 case.eloss loss function 	 case.refraction n,k

case.sumrules

More Stuff You May Need to Know

spin-polarized calculations
Kramers-Kronig is not additive.
1 x joint -up && x joint -dn
2 addjoint-updn
3 x kram

Kramers-Kronig needs $Im \epsilon$ in a large energy range

Some Limitations

• linear optical properties only

•
$$W = \varepsilon^{-1(1)} V + \varepsilon^{-1(2)} V^2 + \cdots$$

- Kohn-Sham eigenstates interpreted as excited states \rightsquigarrow "scissors" operator: $\epsilon_c(\mathbf{k}) \rightarrow \epsilon_c^{\text{LDA}}(\mathbf{k}) + \Delta$
- independent-particle approx. (no e^--h^+ interaction) \implies Bethe-Salpeter (BSE) \rightarrow Peter Blaha's lecture (13:00)
- LDA/GGA are not exact
 - → hybrid DFT, effective potentials → Peter Blaha
 - \rightarrow DFT+U, LDA+DMFT \rightarrow my lecture (tomorrow 9:00)

Comparison to Experiment

REELS = reflection electron energy loss spectroscopy

Optical Constants for 17 Elemental Metals Werner *et al.*, Phys. Chem. Ref. Data 38, 1013 (2009)

Comparison to Experiment

Werner et al., Phys. Chem. Ref. Data 38, 1013 (2009)