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1 Representation of the Charge Density in the

Pa
kage WIEN97

This se
tion summarizes the way the 
harge density is 
al
ulated by lapw5 from

the 
oeÆ
ients stored in 
lmsum or 
lmval.

The 
harge density is represented by a plane wave expansion in the inter-

stitial region (I) and as the 
ombination of a radial fun
tion times spheri
al

harmoni
s inside the muÆn-tin spheres, in this way,
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The subroutine main1

1

reads the mesh where the 
harge density is going to

be 
al
ulated from 
ase.in5. The 
oeÆ
ients of the 
harge density expansion

are stored in 
ase.
lmsum. The �rst part of this �le 
ontains the 
oeÆ
ients

of the spheri
al expansion and the last part the representative re
ipro
al latti
e

ve
tor of ea
h star and the 
orresponding 
oeÆ
ient. This former part is read

in outin, where the stars are also rebuilt.

1.1 The 
harge density 
al
ulation in the interstitial re-

gion

When the point ~r is in the interstitial region the 
harge density is 
al
ulated as

the Fourier expansion shown in Eq. (1) by the routine rhoout. This is a very

simple routine that performs the summation over

~

G spa
e of the 
oeÆ
ients.

The summation over

~

G is done over stars of

~

G. In the �le 
lmsum, after the


oeÆ
ients of the expansion inside the spheres, NK lines are stored with the

~

G

and the 
orresponding �

~

G

. These are not all the

~

G in
luded in the summation,

1

All the subroutine names refer to the �les lo
ated in SRC lapw5 of the WIEN97 distribu-

tion and are written in typewriter font.
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these are the representatives of ea
h star. When these lines are read in outin

the star for ea
h one of these representatives is built by stern.

The stars are built applying ea
h of the rotations in the symmetry group

(COMMON /SYM2/) to the representative

~

G. In this way, INST(I) new

~

G are


reated and stored in KREC (�rst member of COMMON /OUT/). In this pro
ess of


reating the starts, some symmetry operations map the representative onto the

same star member, for these symmetry operations the summation �(

~

G) has to

be done as

�(

~

G

0

) =

1

INST(I)

X

R

e

i

~

G

0

�

~

t

R

;

where the summation is done over all the symmetry operations that map

~

G

onto the same

~

G

0

and the normalization with the number of elements of the

star INST(I) is in
luded here. These �(

~

G

0

) are stored in TAUK (fourth member

of COMMON /OUT/).

With the stars rebuilt the summation of the Fourier series is done as

�(~r) =

X

i2stars

�

i

X

~

G2star i

e

i

~

G�~r

�(

~

G) : (2)

1.2 The 
harge density 
al
ulation inside the muÆn-tin

spheres

When main1 determines that the point ~r where the 
harge density is to be


al
ulated falls inside a muÆn-tin sphere (inter is false) the following steps are

performed:

� The point ~r is rotated using the symmetry operation that maps the atom

where ~r fell 
lose to the representative atom. This is done taking 
ar of

the ortho swit
h.

� The point ~r is redu
ed to the smallest possible with redu
. (No rotation

performed here)

� The lo
al rotation matrix is applied to the point.

� The index i

r

of r = j~rj in the logarithmi
 radial grid is 
al
ulated through

i

r

= 1+

ln

�

r

R

0

(j)

�

�X(j)

: (3)

Here j is the index of the inequivalent atom, �X(j) the mesh separation

given by

�X(j) =

ln

�

R

MT

(j)

R

0

(j)

�

n� 1

; (4)

where R

0

(j) is the �rst radial mesh point, R

MT

(j) the muÆn-tin radius,

and n the number of radial mesh points for atom j as read form the stru
t

�le.
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� The module 
harge is 
alled, where the summation over lm is done as

�(r; �; �) =

LMMAX

X

lm=1

�

lm

(r) �

lm

(�; �) ; (5)

with �(r; �; �) stored in CHG, �

lm

(r) stored in RHO(ILM), and �

lm

(�; �)

stored in ANG(ILM). To perform this sum the 
ode follows this steps:

{ The spheri
al harmoni
s Y

m

l

(�; �) are 
al
ulated in ylm using a re-


ursion method and stored in YL(l(l + 1) +m+ 1).

{ For ea
h lm pair �

lm

(r) is 
al
ulated by radial interpolating the

CLM read from 
lmsum and dividing by r

2

.

{ In the same loop �

lm

(�; �) is 
al
ulated as

�

lm

=

8

>

>

>
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>
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>
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i

�
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Y

m

l

+ Y

�m

l

�

p

2

if m 6= 0 and l < 0 ;

�

(�1)

m

Y

m

l

+ Y

�m

l

�

p

2

if m 6= 0 and l > 0 ;

where l and m are stored in LM(1; ILM; j) and LM(2; ILM; j) respe
tively,

and read from in2.

{ Finally the summation of Eq. (5) is performed talking 
are if the

lo
al symmetry of the atom is 
ubi
 or not.

� With the 
harge density stored in CHG, main1 writes it to a temporary

unformatted �le (unit 10).

2 Cal
ulation of the 
harge density gradient

Using lapw5 as our starting point, we have written a program, 
alled bader,

whi
h adds to the fun
tionality of lapw5 a swit
h GRAD to 
al
ulate the 
harge

density gradient. In this se
tion we des
ribe the details of the implementations

of this swit
h.

The input �les are read by main1 as before and the de
ision is made if

the point where the 
harge density or gradient are to be 
al
ulated falls inside

or outside the muÆn tins. If the point is interstitial, r�(~r) is 
al
ulated inside

grhoinst, if the point is inside a muÆn tin, the 
al
ulation is done in grhosphe.

These routines are des
ribed in the following sub-se
tions. After the gradient is

returned, it is proje
ted on the plane where ~r is 
onstrained.
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2.1 Gradient of the 
harge density in the interstitial re-

gion

Before 
alling grhoinst to 
al
ulater�(~r) in the interstitial region, main1 takes


are of the normalization di�eren
e between ortho false and true. If ortho is

true, ~r is given to grhoinst in units of the latti
e 
onstants and the

~

G's in

units of the inverse of latti
e 
onstants. On the other hand, if ortho is false, ~r

is given in Bohr and the

~

G's in Bohr

�1

. This di�eren
e in the treatment has to

be taken into a

ount to 
orre
t the units on
e grhoinst returns the gradient.

In grhoinst the 
al
ulation of the gradient is very simple, the derivative of

the 
harge density in the interstitial region is given by the gradient of � given

by Eq. (2), as

r�(~r) =

X

i2stars

�

i

X

~

G2star i

i

~

G e

i

~

G�~r

�(

~

G) : (6)

In 
ase of a real 
al
ulation, with inversion symmetry, the 
harge density is


al
ulated using the real part of Eqs. (2) and (6). This saves the spa
e required

for 
omplex storage.

2.2 Gradient of the 
harge density inside the spheres

In the 
ase of the 
harge density inside the spheres, before 
alling grhosphe

the ve
tor ~r is rotated twi
e. First, a symmetry rotation is applied that maps

the atom where ~r fell 
lose to, onto the representative atom. Se
ond, the lo
al

rotation matrix for that atom is applied. After the ve
tor r� is returned by

grhosphe this rotations have to be reversed, this is done by rotat ba
k for the

lo
al rotation matrix, and by rotate ba
k for the symmetry rotation.

The 
al
ulation of the gradient 
harge density in grhosphe is done in four

parts: the initialization part, a loop over ilm with the 
al
ulation of the radial

and angular parts of the expansion and its derivatives, the summation over ilm,

and the transformation to Cartesian 
oordinates.

During the initialization part we 
al
ulate the spheri
al harmoni
s with a


all to ylm, the derivative of the spheri
al harmoni
s with respe
t to � in dtylm,

and the matrix 
hange that maps the derivatives of � with respe
t to r, �, and �

to its derivatives respe
t to x, y, and z. Details on the 
al
ulation of �

�

Y

m

l

(�; �)

are given in Appendix A. The storage of �

�

Y

m

l

(�; �) is similar to the one used

to store the Y

m

l

, i.e. �

�

Y

m

l

(�; �) is stored in dtyl(l(l + 1) +m+ 1).

In the loop over lm the values of �

lm

, �

r

�

lm

, �

lm

, �

�

�

lm

, and �

�

�

lm

are

obtained and stored in rho(ilm), drrho(ilm), ang(ilm), dtang(ilm), and

dfang(ilm) respe
tively.

The sum over lm is done to 
al
ulate the partial derivatives of the 
harge

density respe
t to r. �, and � as,

�

r

� =

LMMAX

X

lm=1

�

r

�

lm

(r) �(�; �) (7)
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�

�

� =

LMMAX

X

lm=1

�

lm

(r) �

�

�(�; �) (8)

�

�

� =

LMMAX

X

lm=1

�

lm

(r) �

�

�(�; �) ; (9)

the partial derivatives of � in spheri
al 
oordinates are stored in the ve
tor

ds
rho.

Finally, the transformation to Cartesian 
oordinates is done. If we 
all u

1

=

r, u

2

= �, u

3

= �, x

1

= x, x

2

= y, and x

3

= z, the 
omponents of the gradient

in Cartesian 
oordinates ��=�x

i

are obtained as

��

�x

i

=

3

X

j=1

��

�u

j

�u

j

�x

i

;

The terms �u

j

=�x

i

are stored in 
hange(j,i) and are given by

�r

�x

= sin � 
os�

��

�x

=


os � 
os�

r

��

�x

= �

sin�

r sin �

�r

�y

= sin � sin�

��

�y

=


os � sin�

r

��

�y

=


os�

r sin �

�r

�z

= 
os �

��

�z

=

sin �

r

��

�z

= 0

This expressions are 
oded in gen 
hange, where 
hange is loaded.

A Derivatives of the spheri
al harmoni
s

The expression for the spheri
al harmoni
s is [1℄

Y

m

l

(�; �) =

s

2l+ 1

4�

(l �m)!

(l +m)!

P

m

l

(
os �) e

im�

:

The derivative of the spheri
al harmoini
s with respe
t to � is just

�

�

Y

m

l

(�; �) = imY

m

l

(�; �)

and does not need any spe
ial 
onsideration.

The derivative respe
t to � is essentialy the derivative of the asso
iated

Legendre polynomial

�

�

Y

m

l

(�; �) = �

s

2l+ 1

4�

(l �m)!

(l +m)!

�

dP

m

l

(x)

dx

�

x=
os �

sin � e

im�

;
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and from the de�nition of these polynomials

P

m

l

(x) = (�1)

m

�

1� x

2

�

m=2

d

m

dx

m

P

0

l

(x)

the derivative 
an be evaluated as

dP

m

l

(x)

dx

= �

mx

1� x

2

P

m

l

(x)�

1

(1� x

2

)

1=2

P

m+1

l

(x) :

Repla
ing this derivative in the expresion for the derivative of the spheri
al

harmoni
s we get

�

�

Y

m

l

(�; �) = m


os �

sin �

Y

m

l

(�; �) + e

�i�

p

l(l + 1)�m(m+ 1)Y

m+1

l

(�; �) :

This is the expresion we 
oded in dtylm. In this expresion, there is a detail

to be taken into a

ount regrading the limit when � is zero. In this limit the

se
ond member on the right is zero, be
ause the spheri
al harmoni
s is zero.

The �rst member instead has a non-zero limit if jmj = 1 and zero otherwise. In

the 
ase � = 0, the expression

�Y

m

l

(0; 0) =

8

>

>

<

>

>

:

�m

p

l(l + 1)(2l+ 1)

4

p

�

if jmj = 1 ;

0 other 
ase

is used.

Referen
es

[1℄ W. H. Press, S. A. Teuklosky, W. T. Vetterling, and B. P. Flannery, Numer-

i
al Re
ipes in C: The Art of S
ienti�
 Computing (Cambridge University

Press, Cambridge, UK, 1992) p. 252.

6


