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1 Representation of the Charge Density in the
Package WIEN97

This section summarizes the way the charge density is calculated by lapw5 from
the coefficients stored in clmsum or clmval.

The charge density is represented by a plane wave expansion in the inter-
stitial region (I) and as the combination of a radial function times spherical
harmonics inside the muffin-tin spheres, in this way,
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The subroutine maini ! reads the mesh where the charge density is going to
be calculated from case.inb. The coefficients of the charge density expansion
are stored in case.clmsum. The first part of this file contains the coefficients
of the spherical expansion and the last part the representative reciprocal lattice
vector of each star and the corresponding coefficient. This former part is read
in outin, where the stars are also rebuilt.

1.1 The charge density calculation in the interstitial re-
gion
When the point 7 is in the interstitial region the charge density is calculated as
the Fourier expansion shown in Eq. (1) by the routine rhoout. This is a very
simple routine that performs the summation over G space of the coefficients.
The summation over G is done over stars of G. In the file clmsum, after the

coefficients of the expansion inside the spheres, NK lines are stored with the G
and the corresponding p5. These are not all the G included in the summation,

LAll the subroutine names refer to the files located in SRC_lapw5 of the WIEN97 distribu-
tion and are written in typewriter font.



these are the representatives of each star. When these lines are read in outin
the star for each one of these representatives is built by stern.

The stars are built applying each of the rotations in the symmetry group
(COMMON /SYM2/) to the representative G. In this way, INST(I) new G are
created and stored in KREC (first member of COMMON /QUT/). In this process of
creating the starts, some symmetry operations map the representative onto the

—

same star member, for these symmetry operations the summation 7(G) has to
be done as L
7(G) = —— N Gt
(&) INST(I) ;

where the summation is done over all the symmetry operations that map G
onto the same G’ and the normalization with the number of elements of the
star INST(I) is included here. These 7(G') are stored in TAUK (fourth member
of COMMON /0UT/).

With the stars rebuilt the summation of the Fourier series is done as
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1.2 The charge density calculation inside the muffin-tin
spheres

When mainl determines that the point 7 where the charge density is to be
calculated falls inside a muffin-tin sphere (inter is false) the following steps are
performed:

e The point 7 is rotated using the symmetry operation that maps the atom
where # fell close to the representative atom. This is done taking car of
the ortho switch.

e The point 7 is reduced to the smallest possible with reduc. (No rotation
performed here)

e The local rotation matrix is applied to the point.

e The index i, of r = |F] in the logarithmic radial grid is calculated through

in (m7)

i = 1 3
Here j is the index of the inequivalent atom, AX(j) the mesh separation
given by
1 (RIJ:L\’/IT(j) )
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where Ry(j) is the first radial mesh point, Rp;7(j) the muffin-tin radius,
and n the number of radial mesh points for atom j as read form the struct
file.



e The module charge is called, where the summation over Im is done as
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with p(r,6,¢) stored in CHG, p;m(r) stored in RHO(ILM), and Ay, (6, @)
stored in ANG(ILM). To perform this sum the code follows this steps:

— The spherical harmonics Y™ (6, ¢) are calculated in ylm using a re-
cursion method and stored in YL(I(I + 1) + m + 1).

— For each Im pair p;,(r) is calculated by radial interpolating the
CLM read from clmsum and dividing by rZ.

— In the same loop A, (8, ¢) is calculated as
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where | and m are stored in LM(1, ILM, ) and LM(2, ILM, j) respectively,
and read from in2.

if m#0and 1 <0,

if m#0and 1 >0,

— Finally the summation of Eq. (5) is performed talking care if the
local symmetry of the atom is cubic or not.

e With the charge density stored in CHG, mainl writes it to a temporary
unformatted file (unit 10).

2 Calculation of the charge density gradient

Using lapwb as our starting point, we have written a program, called bader,
which adds to the functionality of lapw5 a switch GRAD to calculate the charge
density gradient. In this section we describe the details of the implementations
of this switch.

The input files are read by mainl as before and the decision is made if
the point where the charge density or gradient are to be calculated falls inside
or outside the muffin tins. If the point is interstitial, Vp(7) is calculated inside
grhoinst, if the point is inside a muffin tin, the calculation is done in grhosphe.
These routines are described in the following sub-sections. After the gradient is
returned, it is projected on the plane where 7 is constrained.



2.1 Gradient of the charge density in the interstitial re-
gion

Before calling grhoinst to calculate Vp(7) in the interstitial region, main1 takes
care of the normalization difference between ortho false and true. If ortho is
true, 7 is given to grhoinst in units of the lattice constants and the G’s in
units of the inverse of lattice constants. On the other hand, if ortho is false, ¥
is given in Bohr and the G's in Bohr~!. This difference in the treatment has to
be taken into account to correct the units once grhoinst returns the gradient.
In grhoinst the calculation of the gradient is very simple, the derivative of
the charge density in the interstitial region is given by the gradient of p given

by Eq. (2), as
Vo = Y o Y G r(G). (6)
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In case of a real calculation, with inversion symmetry, the charge density is
calculated using the real part of Egs. (2) and (6). This saves the space required
for complex storage.

2.2 Gradient of the charge density inside the spheres

In the case of the charge density inside the spheres, before calling grhosphe
the vector 7 is rotated twice. First, a symmetry rotation is applied that maps
the atom where 7 fell close to, onto the representative atom. Second, the local
rotation matrix for that atom is applied. After the vector Vp is returned by
grhosphe this rotations have to be reversed, this is done by rotat_back for the
local rotation matrix, and by rotate_back for the symmetry rotation.

The calculation of the gradient charge density in grhosphe is done in four
parts: the initialization part, a loop over ilm with the calculation of the radial
and angular parts of the expansion and its derivatives, the summation over ilm,
and the transformation to Cartesian coordinates.

During the initialization part we calculate the spherical harmonics with a
call to ylm, the derivative of the spherical harmonics with respect to 6 in dtylm,
and the matrix change that maps the derivatives of p with respect to r, 8, and ¢
to its derivatives respect to x, y, and z. Details on the calculation of 9pY;™ (8, @)
are given in Appendix A. The storage of 0pY;™ (6, ¢) is similar to the one used
to store the Y, i.e. 0gY,™ (6, ¢) is stored in dtyl(I(I + 1) + m + 1).

In the loop over Im the values of pim, Orpim, Aim, OsAim, and OyAiy, are
obtained and stored in rho(ilm), drrho(ilm), ang(ilm), dtang(ilm), and
dfang(ilm) respectively.

The sum over Im is done to calculate the partial derivatives of the charge
density respect to r. 6, and ¢ as,
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the partial derivatives of p in spherical coordinates are stored in the vector
dscrho.

Finally, the transformation to Cartesian coordinates is done. If we call u; =
r,uy =0, u3 = ¢, x1 = x, x5 =y, and x3 = z, the components of the gradient
in Cartesian coordinates Op/0x; are obtained as

Op Ou;
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The terms Ou;/0z; are stored in change(j,1) and are given by
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This expressions are coded in gen_change, where change is loaded.

A Derivatives of the spherical harmonics

The expression for the spherical harmonics is [1]

¥ (6,6) = L B cost) o0

The derivative of the spherical harmoinics with respect to ¢ is just
a¢>Ylm (97 ¢) = imY}m (97 ¢)

and does not need any special consideration.

The derivative respect to 6 is essentialy the derivative of the associated
Legendre polynomial
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and from the definition of these polynomials
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the derivative can be evaluated as
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Replacing this derivative in the expresion for the derivative of the spherical
harmonics we get
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9pY,™ (0, 9) = Y"(0,0) + e I+ 1) —m(m + )Y (0, 0) .
This is the expresion we coded in dtylm. In this expresion, there is a detail
to be taken into account regrading the limit when 6 is zero. In this limit the
second member on the right is zero, because the spherical harmonics is zero.
The first member instead has a non-zero limit if |m| = 1 and zero otherwise. In
the case 6 = 0, the expression
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0 other case

is used.
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