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1 Introduction

Relativistic corrections in electron structure calculation are important if:
e the electron velocity is of the same order as velocity of light
e they give rise to the effects not observed otherwise

In the interstitial region relativistic correction may be usually neglected - electron
velocity is limited by the cutoff in the k-space.

Within the atomic spheres the importance of relativistic corrections increases with
increasing atomic number.

Example of the effect when relativistic corrections are important is magnetocrys-
talline anisotropy: though dipolar interactions may also contribute, the dominant mech-
anism usually arises from combined effect of the crystal field and spin-orbit interactions.

2 Dirac equation

Application of the Dirac equation to calculation of the electron structure of atoms
may be found in several textbooks. In this section we follow closely the analysis given
by: J. Kubler and V. Eyert, Electronic structure calculations in Materials Science and
Technology. Vol. 3A: Electronic and Magnetic Properties of Metals and Ceramics.
Part I. Volume Ed.: K.H.J. Buschow. VCH-Verlag, Weinheim 1992, p. 1-145

Dirac Hamiltonian can be written as (energies are measured relative to the rest

energy):
Hp = cap+ (B — 1)mc? + V(7) (1)

where @, § are 4x4 matrices:
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04,0y, 0, are the Pauli-spin matrices. Eigenvectors of (1) are four-component functions
W which are written in terms of two-component functions @, x:
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In case of electrons @ is the ’large’ and x is the ’small’ component of the wave function.
(1-3) lead to a set of coupled equations:

c(@p)x = (e = V)@ (4)
c(GP)® = (e =V + 2mc?)x (5)
From (4-5) we get the equation for the large component:
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We now use an approximation:
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which, together with:
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leads to an differential equation for ®:
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2.1 Dirac equation in central field

If the potential has the spherical symmetry (10) reduces to:
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First and second term give nonrelativistic Schrodinger equation. Third and fourth term
are mass and Darwin correction, respectively. Finally the last term corresponds to the
spin-orbit coupling.

Due to the spin-orbit coupling W is not an eigenfunction of spin or orbital moment.
Instead the good quantum numbers are j, 7, and K
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hk are eigenvalues of an operator:
K:<0l+h 0 ) (13)

ks and j are related by £ = £(j + 3).
The four-component function W is now written as:
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where g and f are the radial function, yj; is the r-independent eigenfunction of 52, j,,[?
and s? formed by the combination of the Pauli spinor with the spherical harmonics.
The coupled systems of equations for f, g is:

N (15)
h[jﬁ+1i”g]—(g—v+2mc2)f:0 (16)



By eliminating f we obtain:
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where we introduced relativistically enhanced mass
e-V
M = 1
m 2¢? (18)
and used that
k(k+1)=11l+1) (19)
Function f is given by
h dg 14k
= o 2
/ 2Mc(dr T 9) (20)

The scalar relativistic approximation is obtained by omitting in (17, 20) the terms
which depend on k. Clear advantage of this approximation is that [ and s are good
quantum numbers - this is especially important in spin-polarized calculations. The
spin-orbit coupling may be then taken into account using the method described below.
We denote the scalar relativistic approximation to f,g by f, g:
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and f, g satisfy the set of equations:
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The four-component wave function is now written as:

where ® is a pure spin state:

Or, = [

1Y, 26
oMer’ JYimXs (26)
Functions ¥ are not eigenfunctions of the Dirac Hamiltonian (1) and their deviation
from eigenfunction is used to define the spin-orbit Hamiltonian Hg,:

HQ; = 57;5 + Hs(ﬂﬁ (27)
In the basis of functions (23) Hj, has the form:
h 1dv (& 0
Hyo = 5775—-—~ 2
2M02rdr<0 0) (28)

Note that Hg, defined in this way acts on the large component of the wave function
only.



3 Second variational treatment of spin-orbit coupling

The WIEN package provides the possibility to perform both non-relativistic and rel-
ativistic calculations. When running the relativistic calculations, the way in which
relativity is included differs for core and valence states. The core states are assumed
to be fully occupied and fully relativistic calculation is possible. The following discus-
sion concerns therefore the valence (and/or local) orbitals only. These orbitals are -
within the atomic spheres - treated in the scalar relativistic approximation. To obtain
the basis set for the LAPW calculation, coupled equations (22, 23) are first solved.
Spin is good quantum number, therefore spin up and spin down states are considered
separately:
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By combining gble (gblim) the LAPW basis set for spin up (spin down) within the atomic
spheres is constructed.

As the spin-orbit coupling has nonzero matrix elements between spin up and spin
down basis functions, an obvious way to include Hg, would be to double the dimension
of the eigenvalue problem. For large systems this may be difficult. Fortunately there
exists more efficient way (called second variational method) to achieve the same goal.
First the eigenvalue problem is solved in the usual way i.e. separately for spin up
and spin down states for Hamiltonian not containing H,. Resulting eigenvalues and
eigenfunctions are (we omit the index k distinguishing different k in the Brillouin zone):

v By By (30)
In the second step new eigenvalue problem is considered for total Hamiltonian (includ-
ing H;,) with basis functions (30). Calculation of matrix elements requires only modest
effort - scalar relativistic Hamiltonian contributes only to the diagonal matrix elements
by EE,E#, which were already calculated, and calculation of H,, matrix elements is
straightforward. The number of 4 ¥ is usually much smaller then the number of
functions in original basis set, which results in an eigenvalue problem of smaller di-
mension. The second variational method has an additional advantage of increasing the
flexibility of the calculation - in many cases H,, is relatively small. The second vari-
ational method then allows to neglect matrix elements of Hg, between states differing
by more than a prescribed energy. Another possibility is to choose a subset of levels
from (30) and consider effect of Hg, within this subset only.

4 Implementation of spin-orbit coupling in WIEN

Present implementation of the s-o coupling in WIEN97 is contained in the package
LAPWSO. It allows inclusion of the spin-orbit coupling for non spin-polarized as well
as spin-polarized calculations. The spin-orbit coupling may be included selfconsistently
or non-selfconsistently.



4.1 Files needed by LAPWSO

Definition file with explanation of the meaning of files for case=ni:

number ,'name’,’status’, formatted /unformatted’

5 ,’ni.inso’, ’o0ld’, >formatted’,0
input: input of data

6 ,’ni.outputso’, unknown’,’formatted’,0
output: complete output

8 ,’ni.scfso’, unknown’,’formatted’,0
output: spin-orbit part of the scf file

9 ,’ni.vectordn’, ’old’, ’unformatted’,0
input: eigenvectors from spin down LAPW1 calculation or
in nonmagnetic calculation LAPW1 eigenvectors

10 ,’ni.vectorup’, ’unknown’, ’unformatted’,0
input: eigenvectors from spin up LAPW1 calculation or
in nonmagnetic calculation dummy

18,’ni.vspdn’, ’o0ld’,’formatted’,O
input: spin down spherical potential or
in nonmagnetic calculation spherical potential

19,’ni.vspup’, ’unknown’,’formatted’,O
input: spin up spherical potential
in nonmagnetic calculation dummy

20 ,’ni.struct’, ’o0ld’, ’formatted’,0
input: basic structure file

41,’ni.vectsodn’, ’unknown’,’unformatted’,O
output: spin down part of the s-o eigenvectors in the same basis
as eigenvectors of LAPW1 (ni.vectordn), to be used in LAPW2.

42,’ni.vectsoup’, ’unknown’,’unformatted’,O
output: spin up part of the s-o eigenvectors in the same basis
as eigenvectors of LAPW1 (ni.vectordn), to be used in LAPW2.

43,’ni.vectdum’, ’unknown’,’unformatted’,O
output: auxiliary ’eigenvector’ file to be used in LAPW2 as file 9.
Structure of this file is the same as 41, 42, but vectors are short
to save the memory, eigenvalues are larger than any s-o eigenvalue,
so that the states are never populated.



44 ,°’ni.vectl’, ’unknown’,’unformatted’,O
output: spin-orbit eigenvectors in the basis of eigenvectors of LAPW1
this file is used when calculating average value of an operator X
(package AVERX)

45,’ni.normdn’, ’unknown’,’formatted’,O
output: norms of spin down parts of the s-o eigenvectors (to be used in
s-o version of LAPW2)

46,’ni.normup’, ’unknown’,’formatted’,0
output: norms of spin up parts of the s-o eigenvectors (to be used in
s-o version of LAPW2)

47,’ni.norm’, ’unknown’,’formatted’,O
output: norms of spin up and spin down parts as well as complete norms
of the s-o eigenvectors

4.2 Description of input data for LAPWSO

The input data (case.inso) are:

WFFIL FORMAT (A5) mode of calculation
4 0 0 O FORMAT (4I3) LLMAX, icmplx, ipr, kpot
-10.0000 10.0000 2.0000 FORMAT (3F10.3) EMM(1),EMM(2),EMM(3)
90. 0. FORMAT(2F10.3) theta, phi

e Ist line

mode of calculation, if equal to WFFIL s-0 eigenvectors are calculated else only
eigenvalues

e 2nd line

LMMAX - maximum L for wavefunctions in atomic spheres
icmplx if =1 eigenvectors on input (files .vector) are complex
else eigenvectors on input are real}
ipr print parameter: the larger ipr, the longer output.
kpot - if=0 potential is not averaged when calculating dV/dr
=1 potential is averaged (see also below).

e 3rd line

EMM(1) minimum energy for which the eigenvectors on input will
be considered (Ry)

EMM(2) maximum energy for which the eigenvectors on input will
be considered (Ry)

EMM(3) s-o matrix elements will be calculated for states, energy



e 4th line

of which differ by less than EMM(3).

theta azimuthal angle of magnetization

phi

polar angle of magnetization

4th line is relevant only if the calculation is spin-polarized

When calculating dV/dr (necessary for s-o) V| potential was used for <| [V |>
elements, V; for <t |V| 1> and [V| 4+ V4)]/2 for <1 |V| ]>. This is difficult to justify.
Therefore LAPWSO was modified - switch KPOT makes possible to calculate these
elements with averaged potential (KPOT=1, if KPOT=0 potential is not averaged).
For YCos; KPOT=1 and KPOT=0 give virtually identical results, however.

4.3 Parameters in LAPWSO

LMAX is maximum value of the orbital momentum in atomic spheres. LABC gives
maximum L for wave functions in atomic spheres used when calculating the spin-orbit
coupling. LABC must be greater or equal LMMAX read in data (LABC.ge. LMMAX

is controlled in INIT).

Otherwise meaning of the parameters is the same as in LAPW1, LAPW2
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Constant parameter definition

INTEGER LMAX, NATO, NDIF, NUME, NMAT, NRAD
INTEGER LOMAX, FLMAX, LABC, LABC2

INTEGER LMX, MMAX, NUME2

PARAMETER (LMAX= 12)

PARAMETER (NATO= 6)

PARAMETER (NDIF= 12)

PARAMETER (NUME= 124)

PARAMETER (NMAT= 792)

PARAMETER (NRAD= 881)
AX must be = LOMAX in LAPW1 otherwise conflict in INIT
PARAMETER (LOMAX= 2)

PARAMETER (FLMAX= 3)

(not LMAX!) must be = LMAX in LAPW1 otherwise conflict in INIT
PARAMETER (LMX= LMAX+1)

PARAMETER (LABC = 4)

PARAMETER (LABC2= (LABC+1)*(LABC+1))

PARAMETER (MMAX= 2*LMAX+1)

PARAMETER (NUME2= 2x*NUME)

PARAMETER (NUM2= NUME2x* (NUME2+1)/2)



4.4 Using LAPWSO

In non-magnetic systems the inclusion of the spin-orbit coupling does not lead to low-
ering of the symmetry. Using LAPWSO is then simple, the only complication being
that s-o eigenvectors are in general complex. This must be taken into account when
calculating the density (LAPW2c, not LAPW?2 must be used).

In magnetic systems the inclusion of s-o coupling generally leads to the lowering of
symmetry. If M I f then the symmetry group G, of the system with s-o coupling is
given by: .

gso = ngoo(C) (31)
where G is the group without the s-o coupling. In special cases (hexagonal or tetrag-
onal symmetry, M | ¢©) G = Gso. In most cases, however, simultaneous presence of
m and spin-orbit coupling reduces the symmetry. The reduction has the following
consequences:

e number of the symmetry operations is reduced (change of case.struct file).

e Irreducible wedge of the Brillouin zone must be enlarged (files case.klist, case.kgen
have to be changed).

e The atoms which were equivalent in nonmagnetic system may become nonequiv-
alent, their local co-ordination system may be changed (change of case.struct and
inputs to LSTART, LAPW1, LAPW2, LCORE.

e Reduction of the local symmetry results in increase of the components of non-
spherical potential (change of input to LAPW2).

In order to ease writing the structure and input files, the following way, which
imitates the effect of the symmetry lowering caused by simultaneous presence of the
s-0 coupling and M may be used:

1. From each atom in the struct file make a dumbbell. Axis of the dumbell is along
¢ || M and its center lies in the original position of the atom (to do it the atom
multiplicity must be doubled).

2. Run the NN program and use the structure file, which this program creates.

3. Create the input files in a normal way by running SYMMETRY, LSTART and
KGEN.

4. Reverse step 1/ (from the dumbels created in the first step make the atoms).

Still easier way exists if s-o coupling is not taken into account selfconsistently (in
many cases this may be a good approximation because of relative smallness of H, and
because of the force theorem). Then:

1. perform normal selfconsitent calculation without s-o coupling with original (high
symmetry) structure file.



2. Prepare klist and kgen files corresponding to situation when the symmetry is
lowered by combined presence of the s-o and M as described above.

3. Run LAPW1, LAPW2, LAPWSO, LAPW2c with the new klist, kgen files and
original (symmetrical) struct file.

A block scheme of the WIEN iteration (spin-polarized calculation) with LAPWSO
included looks as follows:

LAPWI1 -up

LAPWI1 -dn

| LAPW2c -up -so|

=
>
— S || S | TP
=
)

| LAPW2c -dn -so]|

LCORE -up
LCORE -dn

MIXER

In the non spin-polarized calculations LAPW1, LAPW2¢ and LCORE are run - as
usual - only once.
5 Calculation of average values

Often we are interested in an average value of an operator X taken in space of H =
Hp + Hg, eigenfunctions, where X is - similarly as H,, - zero in the interstitial and it
can be expressed as a product:

X =X, (r) X (0, ) (32)

Average value of X may be expressed as a weighted sum over irreducible k& points Ej:

<X >=3 X, (kj)wn; (33)
Jn
where R
X (kj) =< b2 X% > (34)
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¥;,7; being the eigenfunctions calculated in LAPWSO. The weights wy, ; are produced

in LAPW2, w,; = 0 for E, ; > Er. The calculation of < X > is performed by
the package AVERX which is very similar to LAPWSO. In particular the parameters

needed by AVERX are the same as

those needed by LAPWSO. Of course the form of

X, (r)X;5([, §) must be specified. This is done in the data. file:

WFFIL

4 0 1 3

-10.0000 10.0000 2.0000
90. 0.

FORMAT (A5) mode of calculation

FORMAT (4I3) LLMAX, icmplx, RINDEX,LSINDEX
FORMAT(3F10.3) EMM(1),EMM(2),EMM(3)
FORMAT(2F10.3) theta, phi

where first, third and fourth lines are the same as for LAPWSO, RINDEX and
LSINDEX in the second line determine the form of X, (r) and X;,(l, 3), respectively, i

the following way:

e RINDEX=1 LSINDEX=1: <X> is number of electrons inside the atomic sphere

(for test)

e RINDEX=2 LSINDEX=1: <X> is the < 1/r3 > expectation value inside the

atomic sphere

e RINDEX=1 LSINDEX=2: <X> is the projection of the spin moment inside the

atomic sphere

e RINDEX=1 LSINDEX=3: <X> is the projection of the orbital moment inside

the atomic sphere

e RINDEX=3 LSINDEX=3: <X> is the orbital part of the hyperfine field at the

nucleus

e RINDEX=3 LSINDEX=5: <X> is the spin dipolar part of the hyperfine field at

the nucleus

The files needed by AVERX are:

5 ,’ni.inaverx’, ’old’, ’fo
6 ,’ni.outputaverx’, ’unknow
8 ,’ni.scfaverx’, ’unkno
9 ,’ni.vectordn’, ’old’,

10 ,’ni.vectorup’, ’old’,
16,’ni.weightaversoup’, ’old’
18,’ni.vspdn’, ’o0ld’,’formatt
19,’ni.vspup’, ’old’,’formatt
20 ,’ni.struct’, ’old’,
26,’ni.weightaverdn’, ’unknow
27,’ni.weightaverup’, ’unknow
41,’ni.vectorsodn’, ’unknown’
42,’ni.vectorsoup’, ’unknown’
43,’ni.vectordum’, ’unknown’,
44 /’ni.vectl’, ’unknown’,’unf

rmatted’,0
n’,’formatted’,0
wn’,’formatted’,0
’unformatted’,9000
’unformatted’,9000
,’formatted’,0
ed’,0
ed’,0
’formatted’,0
n’,’formatted’,0
n’,’formatted’,0
,’unformatted’, 9000
,’unformatted’, 9000
’unformatted’, 9000
ormatted’,9000
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File 16 contains the weights of spin-orbit eigenstates needed for the calculation of
<X> (33). Files 26, 27 contains analogous weights for down and up spin eigenstates
without the spin-orbit. Depending on whether files 26, 27 are present AVERX calculates
(or does not calculate) < X > also without the spin-orbit coupling included. Other
files have the same or analogous meaning as for the LAPWSO package.

6 Examples

6.1 Nonmagnetic - fcc Au

The lattice constant of Au is 7.67 a.u., radius of Au sphere is taken to be 2.6 a.u.,
standard input data (created by init_lapw) are used except: RKMAX=9, additional d
-local orbital at 0.2 and 1.0 Ry, E-window up to 4.5 Ry, GMAX=16. We used 5000 k-
points in the Brillouin zone. The au.scfso file after a convergency with the s-o coupling
was achieved is:

0.0 0.0 angle (M,z), angle (M,x) deg

SPIN-ORBIT EIGENVALUES:
K= 0.00000 0.00000 0.00000 1
MATRIX SIZE= 73  WEIGHT= 1.00
EIGENVALUES ARE:
-4.1857424 -4.1857424 -3.1319008 -3.1319008 -3.1319008

-3.1319008 -0.0605514 -0.0605514 0.2945419 0.2945419
0.2945419 0.2945419 0.3814021 0.3814021 0.4757839
0.4757839 0.4757839 0.4757839 1.7500980 1.7500980
2.0096272 2.0096272 2.0693398 2.0693398 2.0693398
2.0693398 2.4256490 2.4256490 2.7456123 2.7456123
2.7456123 2.7456123 2.7710097 2.7710097 2.7985568
2.7985568 3.0175067 3.0175067 3.0175067 3.0175067
3.4422934 3.4422934 3.4422934 3.4422934 4.0296281
4.0296281 4.3764583 4.3764583 4.3778301 4.3778301

4.3778301 4.3778301
stk ke o ook sk sk ok ke o ok sk sk sk ok e ok ok sk sk sk ke k ke o ok sk sk sk sk k ks ok ok sk sk ok sk ok k ko ok ok ok ok ok

NUMBER OF K-POINTS: 165

In Table 1 some of the results are listed and compared with an older calculation.
Note the splitting between I's and I'7 levels which appears due to the presence of the
spin-orbit coupling.

6.2 Magnetic - hcp Co

Calculations were made for lattice parameters a = 4.7375 a.u., ¢ = 7.6893 a.u., atomic
sphere radius 2.12 a.u and the standard WIEN input, with exception of mixing pa-
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no s-o | s-o nonscf | s-o scf | ASW

e(T'g) -357 -409 -410 | -418

e(T'7) -357 -322 -323 | -323

e(Th) | 241 230 | -230 | -244
B — Ey -853 -885 -885

Table 1: fcc Au. bd eigenvalues at the I' point with respect to Er and the total energy
Eir (Ep = -38095 Ry). All values are in mRy. The ASW results are taken from :
T.Takeda, J.Phys. F: Met. Phys. 10 (1980) 1135.

rameter (co.inm), which was reduced to 0.08. 1000 k points in the Brillouin zone was
considered. The calculations are not fully converged.

M || ¢ Inthis case the symmetry is not lowered by spin-orbit coupling. The calculation
with s-o may thus directly follow after usual spin-polarized calculation. Some of the
results are given in Table 2.

M || @ Presence of the spin-orbit couplings reduces the number of symmetry opera-
tions from 24 to 8. After changing klist and kgen files the non-selfconsistent calculation
may be performed. Selfconsistent calculation must be started from the scratch. The
results are again given in Table 2. If the calculations were fully converged and the
number of k points sufficient, the difference of energies for M || ¢ and M || a would
give (after the simple correction for the lattice contribution) the magnetocrystalline
anisotropy. In this test example the number of k-points is by far too small, however,
and the calculations are not properly converged.

cale. | ¢ | spin moment (pg) | orb. moment (ug) | Eior — Eo (mRy)
no s-0 | - 1.679 - -893.06(2)
s-0 non-scf | ¢ 1.679 0.088 -893.81(2)
s-o scf | ¢ 1.712 0.090 -893.86(2)
s-0 non-scf | a 1.687 0.080 -893.78(2)
s-oscf | a 1.710 0.081 -893.76(2)
Daalderop* | ¢ 1.61 0.085 ?

Table 2: hep Co. Spin, orbital magnetic moments and the total energy Ey; (Ey =-5573
Ry). * G.H.O. Daalderop et al.. Phys. Rev. B 41 (1990) 11919. 1135.

7 Other spin-orbit - like operators

During the last few years numerous attempts appeared to improve the local spin density
functional formalism by adding extra terms to the Hamiltonian - this concerns especially
the situation when the electron - electron correlation is important and the valence
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electron density is strongly inhomogeneous (e.g. compounds containing actinides or
rare-earth elements). The success of these attempts is in many cases spectacular,
though the strict justification of the methods is lacking. In at least two cases: ’Orbital
polarization’ and the 'LDA + U’ methods, the extra terms added have analogous form
as the spin-orbit coupling discussed above and they may be treated in a similar way.

We will discuss the orbital polarization, which imitates the 2nd Hund’s rule, it
may be at least partially justified and corresponding package (LAPWOP) is already
available.
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