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1 Introdu
tion

Relativisti
 
orre
tions in ele
tron stru
ture 
al
ulation are important if:

� the ele
tron velo
ity is of the same order as velo
ity of light

� they give rise to the e�e
ts not observed otherwise

In the interstitial region relativisti
 
orre
tion may be usually negle
ted - ele
tron

velo
ity is limited by the 
uto� in the k-spa
e.

Within the atomi
 spheres the importan
e of relativisti
 
orre
tions in
reases with

in
reasing atomi
 number.

Example of the e�e
t when relativisti
 
orre
tions are important is magneto
rys-

talline anisotropy: though dipolar intera
tions may also 
ontribute, the dominant me
h-

anism usually arises from 
ombined e�e
t of the 
rystal �eld and spin-orbit intera
tions.

2 Dira
 equation

Appli
ation of the Dira
 equation to 
al
ulation of the ele
tron stru
ture of atoms

may be found in several textbooks. In this se
tion we follow 
losely the analysis given

by: J. Kubler and V. Eyert, Ele
troni
 stru
ture 
al
ulations in Materials S
ien
e and

Te
hnology. Vol. 3A: Ele
troni
 and Magneti
 Properties of Metals and Cerami
s.

Part I. Volume Ed.: K.H.J. Bus
how. VCH-Verlag, Weinheim 1992, p. 1-145

Dira
 Hamiltonian 
an be written as (energies are measured relative to the rest

energy):

H

D

= 
~�~p+ (� � 1)m


2

+ V (~r) (1)

where ~�; � are 4x4 matri
es:

~� =

 

0 ~�

~� 0

!

; � =

 

I 0

0 �I

!

(2)

�

x

; �

y

; �

z

are the Pauli-spin matri
es. Eigenve
tors of (1) are four-
omponent fun
tions

	 whi
h are written in terms of two-
omponent fun
tions �; �:

	 =

 

�

�

!

(3)

In 
ase of ele
trons � is the 'large' and � is the 'small' 
omponent of the wave fun
tion.

(1-3) lead to a set of 
oupled equations:


(~�~p)� = ("� V )� (4)


(~�~p)� = ("� V + 2m


2

)� (5)

From (4-5) we get the equation for the large 
omponent:

1

2m

(~�~p)(1 +

"� V

2m


2

)

�1

(~�~p)� + V � = "� (6)

2



We now use an approximation:

(1 +

"� V

2m


2

)

�1

� 1�

"� V

2m


2

(7)

whi
h, together with:

~pV = V ~p� i�h

~

rV (8)

(~�

~

rV )(~�~p) = (

~

rV ~p) + i~�[

~

r; ~p℄ (9)

leads to an di�erential equation for �:

[(1�

"� V

2m


2

)

p

2

2m

+ V ℄��

�h

2

4m

2




2

(

~

rV

~

r�) +

�h

2

4m

2




2

(~�[

~

rV; ~p℄�) = "� (10)

2.1 Dira
 equation in 
entral �eld

If the potential has the spheri
al symmetry (10) redu
es to:

[

p

2

2m

+ V �

p

4

8m

3




2

�

�h

2

4m

2




2

dV

dr

�

�~r

+

1

2m

2




2

1

r

dV

dr

(

~

l~s)℄� = "� (11)

First and se
ond term give nonrelativisti
 S
hr�odinger equation. Third and fourth term

are mass and Darwin 
orre
tion, respe
tively. Finally the last term 
orresponds to the

spin-orbit 
oupling.

Due to the spin-orbit 
oupling 	 is not an eigenfun
tion of spin or orbital moment.

Instead the good quantum numbers are j; j

z

and �

~

j =

~

l + ~s (12)

�h� are eigenvalues of an operator:

K =

 

~�

~

l + �h 0

0 �~�

~

l � �h

!

(13)

� and j are related by � = �(j +

1

2

).

The four-
omponent fun
tion 	 is now written as:

	 =

 

�

�

!

=

 

g(r)Y

j

z

jl

if(r)Y

j

z

jl

0

!

(14)

where g and f are the radial fun
tion, Y

j

z

jl

is the r-independent eigenfun
tion of j

2

; j

z

; l

2

and s

2

formed by the 
ombination of the Pauli spinor with the spheri
al harmoni
s.

The 
oupled systems of equations for f , g is:

�h
[

df

dr

+

1� �

r

f ℄ + ("� V )g = 0 (15)

�h
[

dg

dr

+

1 + �

r

g℄� ("� V + 2m


2

)f = 0 (16)
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By eliminating f we obtain:

�

�h

2

2Mr

2

d

dr

(r

2

dg

dr

)+[V +

�h

2

2Mr

2

l(l + 1)

r

2

℄g�

�h

2

4M

2




2

dV

dr

dg

dr

�

�h

2

4M

2




2

dV

dr

1 + �

r

g = "g (17)

where we introdu
ed relativisti
ally enhan
ed mass

M = m+

"� V

2


2

(18)

and used that

�(� + 1) = l(l + 1) (19)

Fun
tion f is given by

f =

�h

2M


(

dg

dr

+

1 + �

r

g) (20)

The s
alar relativisti
 approximation is obtained by omitting in (17, 20) the terms

whi
h depend on �. Clear advantage of this approximation is that l and s are good

quantum numbers - this is espe
ially important in spin-polarized 
al
ulations. The

spin-orbit 
oupling may be then taken into a

ount using the method des
ribed below.

We denote the s
alar relativisti
 approximation to f; g by

~

f; ~g:

�

�h

2

2Mr

2

d

dr

(r

2

d~g

dr

) + [V +

�h

2

2Mr

2

l(l + 1)

r

2

℄~g �

�h

2

4M

2




2

dV

dr

d~g

dr

= "~g (21)

and

~

f; ~g satisfy the set of equations:

~

f =

�h

2M


d~g

dr

(22)

~g = �

�h


"� V

d

~

f

dr

(23)

The four-
omponent wave fun
tion is now written as:

~

	 =

 

~

�

~�

!

(24)

where

~

� is a pure spin state:

~

� = ~gY

lm

�

s

(25)

while ~� 
ontains mixture of up and down spin fun
tions and it is obtained from (4)

~� = i

~�~r

r

(�

~

f +

~g

2M
r

~�

~

l)Y

lm

�

s

(26)

Fun
tions

~

	 are not eigenfun
tions of the Dira
 Hamiltonian (1) and their deviation

from eigenfun
tion is used to de�ne the spin-orbit Hamiltonian H

so

:

H

~

 = "

~

 +H

so

~

 (27)

In the basis of fun
tions (23) H

so

has the form:

H

so

=

�h

2M


2

1

r

dV

dr

 

~�

~

l 0

0 0

!

(28)

Note that H

so

de�ned in this way a
ts on the large 
omponent of the wave fun
tion

only.
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3 Se
ond variational treatment of spin-orbit 
oupling

The WIEN pa
kage provides the possibility to perform both non-relativisti
 and rel-

ativisti
 
al
ulations. When running the relativisti
 
al
ulations, the way in whi
h

relativity is in
luded di�ers for 
ore and valen
e states. The 
ore states are assumed

to be fully o

upied and fully relativisti
 
al
ulation is possible. The following dis
us-

sion 
on
erns therefore the valen
e (and/or lo
al) orbitals only. These orbitals are -

within the atomi
 spheres - treated in the s
alar relativisti
 approximation. To obtain

the basis set for the LAPW 
al
ulation, 
oupled equations (22, 23) are �rst solved.

Spin is good quantum number, therefore spin up and spin down states are 
onsidered

separately:

�

"

lm

=

 

~g

"

l

Y

lm

�i

~

f

l

"

Y

lm

!

�

"

; �

#

lm

=

 

~g

#

l

Y

lm

�i

~

f

l

#

Y

lm

!

�

#

; �

"

=

 

1

0

!

; �

#

=

 

0

1

!

(29)

By 
ombining �

"

lm

(�

#

lm

) the LAPW basis set for spin up (spin down) within the atomi


spheres is 
onstru
ted.

As the spin-orbit 
oupling has nonzero matrix elements between spin up and spin

down basis fun
tions, an obvious way to in
lude H

so

would be to double the dimension

of the eigenvalue problem. For large systems this may be diÆ
ult. Fortunately there

exists more eÆ
ient way (
alled se
ond variational method) to a
hieve the same goal.

First the eigenvalue problem is solved in the usual way i.e. separately for spin up

and spin down states for Hamiltonian not 
ontaining H

so

. Resulting eigenvalues and

eigenfun
tions are (we omit the index k distinguishing di�erent

~

k in the Brillouin zone):

 

"

n

; E

"

n

 

#

n

; E

#

n

(30)

In the se
ond step new eigenvalue problem is 
onsidered for total Hamiltonian (in
lud-

ing H

so

) with basis fun
tions (30). Cal
ulation of matrix elements requires only modest

e�ort - s
alar relativisti
 Hamiltonian 
ontributes only to the diagonal matrix elements

by E

"

n

; E

#

n

, whi
h were already 
al
ulated, and 
al
ulation of H

so

matrix elements is

straightforward. The number of  

"

n

;  

#

n

is usually mu
h smaller then the number of

fun
tions in original basis set, whi
h results in an eigenvalue problem of smaller di-

mension. The se
ond variational method has an additional advantage of in
reasing the


exibility of the 
al
ulation - in many 
ases H

so

is relatively small. The se
ond vari-

ational method then allows to negle
t matrix elements of H

so

between states di�ering

by more than a pres
ribed energy. Another possibility is to 
hoose a subset of levels

from (30) and 
onsider e�e
t of H

so

within this subset only.

4 Implementation of spin-orbit 
oupling in WIEN

Present implementation of the s-o 
oupling in WIEN97 is 
ontained in the pa
kage

LAPWSO. It allows in
lusion of the spin-orbit 
oupling for non spin-polarized as well

as spin-polarized 
al
ulations. The spin-orbit 
oupling may be in
luded self
onsistently

or non-self
onsistently.
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4.1 Files needed by LAPWSO

De�nition �le with explanation of the meaning of �les for 
ase=ni:

number ,'name','status','formatted/unformatted'

5 ,'ni.inso', 'old', 'formatted',0

input: input of data

6 ,'ni.outputso', 'unknown','formatted',0

output: 
omplete output

8 ,'ni.s
fso', 'unknown','formatted',0

output: spin-orbit part of the s
f file

9 ,'ni.ve
tordn', 'old', 'unformatted',0

input: eigenve
tors from spin down LAPW1 
al
ulation or

in nonmagneti
 
al
ulation LAPW1 eigenve
tors

10 ,'ni.ve
torup', 'unknown', 'unformatted',0

input: eigenve
tors from spin up LAPW1 
al
ulation or

in nonmagneti
 
al
ulation dummy

18,'ni.vspdn', 'old','formatted',0

input: spin down spheri
al potential or

in nonmagneti
 
al
ulation spheri
al potential

19,'ni.vspup', 'unknown','formatted',0

input: spin up spheri
al potential

in nonmagneti
 
al
ulation dummy

20 ,'ni.stru
t', 'old', 'formatted',0

input: basi
 stru
ture file

41,'ni.ve
tsodn', 'unknown','unformatted',0

output: spin down part of the s-o eigenve
tors in the same basis

as eigenve
tors of LAPW1 (ni.ve
tordn), to be used in LAPW2.

42,'ni.ve
tsoup', 'unknown','unformatted',0

output: spin up part of the s-o eigenve
tors in the same basis as eigenve
tors of LAPW1 (ni.ve
torup), to be used in LAPW2.

as eigenve
tors of LAPW1 (ni.ve
tordn), to be used in LAPW2.

43,'ni.ve
tdum', 'unknown','unformatted',0

output: auxiliary 'eigenve
tor' file to be used in LAPW2 as file 9.

Stru
ture of this file is the same as 41, 42, but ve
tors are short

to save the memory, eigenvalues are larger than any s-o eigenvalue,

so that the states are never populated.

6



44,'ni.ve
t1', 'unknown','unformatted',0

output: spin-orbit eigenve
tors in the basis of eigenve
tors of LAPW1

this file is used when 
al
ulating average value of an operator X

(pa
kage AVERX)

45,'ni.normdn', 'unknown','formatted',0

output: norms of spin down parts of the s-o eigenve
tors (to be used in

s-o version of LAPW2)

46,'ni.normup', 'unknown','formatted',0

output: norms of spin up parts of the s-o eigenve
tors (to be used in

s-o version of LAPW2)

47,'ni.norm', 'unknown','formatted',0

output: norms of spin up and spin down parts as well as 
omplete norms

of the s-o eigenve
tors

4.2 Des
ription of input data for LAPWSO

The input data (
ase.inso) are:

WFFIL FORMAT(A5) mode of 
al
ulation

4 0 0 0 FORMAT(4I3) LLMAX, i
mplx, ipr, kpot

-10.0000 10.0000 2.0000 FORMAT(3F10.3) EMM(1),EMM(2),EMM(3)

90. 0. FORMAT(2F10.3) theta, phi

� 1st line

mode of 
al
ulation, if equal to WFFIL s-o eigenve
tors are 
al
ulated else only

eigenvalues

� 2nd line

LMMAX - maximum L for wavefun
tions in atomi
 spheres

i
mplx if =1 eigenve
tors on input (files .ve
tor) are 
omplex

else eigenve
tors on input are real}

ipr print parameter: the larger ipr, the longer output.

kpot - if=0 potential is not averaged when 
al
ulating dV/dr

=1 potential is averaged (see also below).

� 3rd line

EMM(1) minimum energy for whi
h the eigenve
tors on input will

be 
onsidered (Ry)

EMM(2) maximum energy for whi
h the eigenve
tors on input will

be 
onsidered (Ry)

EMM(3) s-o matrix elements will be 
al
ulated for states, energy

7



of whi
h differ by less than EMM(3).

� 4th line

theta azimuthal angle of magnetization

phi polar angle of magnetization

4th line is relevant only if the 
al
ulation is spin-polarized

When 
al
ulating dV=dr (ne
essary for s-o) V

#

potential was used for <# jV j #>

elements, V

"

for <" jV j "> and [V

#

+ V

"

)℄=2 for <" jV j #>. This is diÆ
ult to justify.

Therefore LAPWSO was modi�ed - swit
h KPOT makes possible to 
al
ulate these

elements with averaged potential (KPOT=1, if KPOT=0 potential is not averaged).

For YCo

5

KPOT=1 and KPOT=0 give virtually identi
al results, however.

4.3 Parameters in LAPWSO

LMAX is maximum value of the orbital momentum in atomi
 spheres. LABC gives

maximum L for wave fun
tions in atomi
 spheres used when 
al
ulating the spin-orbit


oupling. LABC must be greater or equal LMMAX read in data (LABC.ge.LMMAX

is 
ontrolled in INIT).

Otherwise meaning of the parameters is the same as in LAPW1, LAPW2





 Constant parameter definition




INTEGER LMAX, NATO, NDIF, NUME, NMAT, NRAD

INTEGER LOMAX, FLMAX, LABC, LABC2

INTEGER LMX, MMAX, NUME2




PARAMETER (LMAX= 12)

PARAMETER (NATO= 6)

PARAMETER (NDIF= 12)

PARAMETER (NUME= 124)

PARAMETER (NMAT= 792)

PARAMETER (NRAD= 881)


 LOMAX must be = LOMAX in LAPW1 otherwise 
onfli
t in INIT

PARAMETER (LOMAX= 2)

PARAMETER (FLMAX= 3)


 LMX (not LMAX!) must be = LMAX in LAPW1 otherwise 
onfli
t in INIT

PARAMETER (LMX= LMAX+1)

PARAMETER (LABC = 4)

PARAMETER (LABC2= (LABC+1)*(LABC+1))

PARAMETER (MMAX= 2*LMAX+1)

PARAMETER (NUME2= 2*NUME)

PARAMETER (NUM2= NUME2*(NUME2+1)/2)
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4.4 Using LAPWSO

In non-magneti
 systems the in
lusion of the spin-orbit 
oupling does not lead to low-

ering of the symmetry. Using LAPWSO is then simple, the only 
ompli
ation being

that s-o eigenve
tors are in general 
omplex. This must be taken into a

ount when


al
ulating the density (LAPW2
, not LAPW2 must be used).

In magneti
 systems the in
lusion of s-o 
oupling generally leads to the lowering of

symmetry. If

~

M k

~

� then the symmetry group G

so

of the system with s-o 
oupling is

given by:

G

so

= G \D

1

(

~

�) (31)

where G is the group without the s-o 
oupling. In spe
ial 
ases (hexagonal or tetrag-

onal symmetry,

~

M k 
) G � G

so

. In most 
ases, however, simultaneous presen
e of

~m and spin-orbit 
oupling redu
es the symmetry. The redu
tion has the following


onsequen
es:

� number of the symmetry operations is redu
ed (
hange of 
ase.stru
t �le).

� Irredu
ible wedge of the Brillouin zone must be enlarged (�les 
ase.klist, 
ase.kgen

have to be 
hanged).

� The atoms whi
h were equivalent in nonmagneti
 system may be
ome nonequiv-

alent, their lo
al 
o-ordination system may be 
hanged (
hange of 
ase.stru
t and

inputs to LSTART, LAPW1, LAPW2, LCORE.

� Redu
tion of the lo
al symmetry results in in
rease of the 
omponents of non-

spheri
al potential (
hange of input to LAPW2).

In order to ease writing the stru
ture and input �les, the following way, whi
h

imitates the e�e
t of the symmetry lowering 
aused by simultaneous presen
e of the

s-o 
oupling and

~

M may be used:

1. From ea
h atom in the stru
t �le make a dumbbell. Axis of the dumbell is along

~

� k

~

M and its 
enter lies in the original position of the atom (to do it the atom

multipli
ity must be doubled).

2. Run the NN program and use the stru
ture �le, whi
h this program 
reates.

3. Create the input �les in a normal way by running SYMMETRY, LSTART and

KGEN.

4. Reverse step 1/ (from the dumbels 
reated in the �rst step make the atoms).

Still easier way exists if s-o 
oupling is not taken into a

ount self
onsistently (in

many 
ases this may be a good approximation be
ause of relative smallness of H

so

and

be
ause of the for
e theorem). Then:

1. perform normal self
onsitent 
al
ulation without s-o 
oupling with original (high

symmetry) stru
ture �le.
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2. Prepare klist and kgen �les 
orresponding to situation when the symmetry is

lowered by 
ombined presen
e of the s-o and

~

M as des
ribed above.

3. Run LAPW1, LAPW2, LAPWSO, LAPW2
 with the new klist, kgen �les and

original (symmetri
al) stru
t �le.

A blo
k s
heme of the WIEN iteration (spin-polarized 
al
ulation) with LAPWSO

in
luded looks as follows:

#

LAPW0

#

LAPW1 -up

#

LAPW1 -dn

#

LAPWSO

#

LAPW2
 -up -so

#

LAPW2
 -dn -so

#

LCORE -up

#

LCORE -dn

#

MIXER

#

In the non spin-polarized 
al
ulations LAPW1, LAPW2
 and LCORE are run - as

usual - only on
e.

5 Cal
ulation of average values

Often we are interested in an average value of an operator

^

X taken in spa
e of H =

H

D

+H

so

eigenfun
tions, where

^

X is - similarly as H

so

- zero in the interstitial and it


an be expressed as a produ
t:

^

X =

^

X

r

(r)

^

X

ls

(

~

l; ~s) (32)

Average value of

^

X may be expressed as a weighted sum over irredu
ible k points

~

k

j

:

<

^

X >=

X

j;n

X

n

(

~

k

j

)w

n;j

(33)

where

X

n

(

~

k

j

) =<  

so

n;j

j

^

X j 

so

n;j

> (34)
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so

n;j

being the eigenfun
tions 
al
ulated in LAPWSO. The weights w

n;j

are produ
ed

in LAPW2, w

n;j

= 0 for E

n;j

> E

F

. The 
al
ulation of <

^

X > is performed by

the pa
kage AVERX whi
h is very similar to LAPWSO. In parti
ular the parameters

needed by AVERX are the same as those needed by LAPWSO. Of 
ourse the form of

^

X

r

(r)

^

X

ls

(

~

l; ~s) must be spe
i�ed. This is done in the data �le:

WFFIL FORMAT(A5) mode of 
al
ulation

4 0 1 3 FORMAT(4I3) LLMAX, i
mplx, RINDEX,LSINDEX

-10.0000 10.0000 2.0000 FORMAT(3F10.3) EMM(1),EMM(2),EMM(3)

90. 0. FORMAT(2F10.3) theta, phi

where �rst, third and fourth lines are the same as for LAPWSO, RINDEX and

LSINDEX in the se
ond line determine the form of

^

X

r

(r) and

^

X

ls

(

~

l; ~s), respe
tively, i

the following way:

� RINDEX=1 LSINDEX=1: <X> is number of ele
trons inside the atomi
 sphere

(for test)

� RINDEX=2 LSINDEX=1: <X> is the < 1=r

3

> expe
tation value inside the

atomi
 sphere

� RINDEX=1 LSINDEX=2: <X> is the proje
tion of the spin moment inside the

atomi
 sphere

� RINDEX=1 LSINDEX=3: <X> is the proje
tion of the orbital moment inside

the atomi
 sphere

� RINDEX=3 LSINDEX=3: <X> is the orbital part of the hyper�ne �eld at the

nu
leus

� RINDEX=3 LSINDEX=5: <X> is the spin dipolar part of the hyper�ne �eld at

the nu
leus

The �les needed by AVERX are:

5 ,'ni.inaverx', 'old', 'formatted',0

6 ,'ni.outputaverx', 'unknown','formatted',0

8 ,'ni.s
faverx', 'unknown','formatted',0

9 ,'ni.ve
tordn', 'old', 'unformatted',9000

10 ,'ni.ve
torup', 'old', 'unformatted',9000

16,'ni.weightaversoup', 'old','formatted',0

18,'ni.vspdn', 'old','formatted',0

19,'ni.vspup', 'old','formatted',0

20 ,'ni.stru
t', 'old', 'formatted',0

26,'ni.weightaverdn', 'unknown','formatted',0

27,'ni.weightaverup', 'unknown','formatted',0

41,'ni.ve
torsodn', 'unknown','unformatted',9000

42,'ni.ve
torsoup', 'unknown','unformatted',9000

43,'ni.ve
tordum', 'unknown','unformatted',9000

44,'ni.ve
t1', 'unknown','unformatted',9000
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File 16 
ontains the weights of spin-orbit eigenstates needed for the 
al
ulation of

<

^

X > (33). Files 26, 27 
ontains analogous weights for down and up spin eigenstates

without the spin-orbit. Depending on whether �les 26, 27 are present AVERX 
al
ulates

(or does not 
al
ulate) <

^

X > also without the spin-orbit 
oupling in
luded. Other

�les have the same or analogous meaning as for the LAPWSO pa
kage.

6 Examples

6.1 Nonmagneti
 - f

 Au

The latti
e 
onstant of Au is 7.67 a.u., radius of Au sphere is taken to be 2.6 a.u.,

standard input data (
reated by init lapw) are used ex
ept: RKMAX=9, additional d

-lo
al orbital at 0.2 and 1.0 Ry, E-window up to 4.5 Ry, GMAX=16. We used 5000 k-

points in the Brillouin zone. The au.s
fso �le after a 
onvergen
y with the s-o 
oupling

was a
hieved is:

0.0 0.0 angle (M,z), angle (M,x) deg

SPIN-ORBIT EIGENVALUES:

K= 0.00000 0.00000 0.00000 1

MATRIX SIZE= 73 WEIGHT= 1.00

EIGENVALUES ARE:

-4.1857424 -4.1857424 -3.1319008 -3.1319008 -3.1319008

-3.1319008 -0.0605514 -0.0605514 0.2945419 0.2945419

0.2945419 0.2945419 0.3814021 0.3814021 0.4757839

0.4757839 0.4757839 0.4757839 1.7500980 1.7500980

2.0096272 2.0096272 2.0693398 2.0693398 2.0693398

2.0693398 2.4256490 2.4256490 2.7456123 2.7456123

2.7456123 2.7456123 2.7710097 2.7710097 2.7985568

2.7985568 3.0175067 3.0175067 3.0175067 3.0175067

3.4422934 3.4422934 3.4422934 3.4422934 4.0296281

4.0296281 4.3764583 4.3764583 4.3778301 4.3778301

4.3778301 4.3778301

********************************************************

NUMBER OF K-POINTS: 165

In Table 1 some of the results are listed and 
ompared with an older 
al
ulation.

Note the splitting between �

8

and �

7

levels whi
h appears due to the presen
e of the

spin-orbit 
oupling.

6.2 Magneti
 - h
p Co

Cal
ulations were made for latti
e parameters a = 4.7375 a.u., 
 = 7.6893 a.u., atomi


sphere radius 2.12 a.u and the standard WIEN input, with ex
eption of mixing pa-
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no s-o s-o nons
f s-o s
f ASW

"(�

8

) -357 -409 -410 -418

"(�

7

) -357 -322 -323 -323

"(�

0

8

) -241 -230 -230 -244

E

tot

�E

0

-853 -885 -885

Table 1: f

 Au. 5d eigenvalues at the � point with respe
t to E

F

and the total energy

E

tot

(E

0

= -38095 Ry). All values are in mRy. The ASW results are taken from :

T.Takeda, J.Phys. F: Met. Phys. 10 (1980) 1135.

rameter (
o.inm), whi
h was redu
ed to 0.08. 1000 k points in the Brillouin zone was


onsidered. The 
al
ulations are not fully 
onverged.

~

M k 
 In this 
ase the symmetry is not lowered by spin-orbit 
oupling. The 
al
ulation

with s-o may thus dire
tly follow after usual spin-polarized 
al
ulation. Some of the

results are given in Table 2.

~

M k a Presen
e of the spin-orbit 
ouplings redu
es the number of symmetry opera-

tions from 24 to 8. After 
hanging klist and kgen �les the non-self
onsistent 
al
ulation

may be performed. Self
onsistent 
al
ulation must be started from the s
rat
h. The

results are again given in Table 2. If the 
al
ulations were fully 
onverged and the

number of k points suÆ
ient, the di�eren
e of energies for

~

M k 
 and

~

M k a would

give (after the simple 
orre
tion for the latti
e 
ontribution) the magneto
rystalline

anisotropy. In this test example the number of k-points is by far too small, however,

and the 
al
ulations are not properly 
onverged.


al
.

~

� spin moment (�

B

) orb. moment (�

B

) E

tot

�E

0

(mRy)

no s-o - 1.679 - -893.06(2)

s-o non-s
f 
 1.679 0.088 -893.81(2)

s-o s
f 
 1.712 0.090 -893.86(2)

s-o non-s
f a 1.687 0.080 -893.78(2)

s-o s
f a 1.710 0.081 -893.76(2)

Daalderop

�


 1.61 0.085 ?

Table 2: h
p Co. Spin, orbital magneti
 moments and the total energy E

tot

(E

0

=-5573

Ry).

�

G.H.O. Daalderop et al.. Phys. Rev. B 41 (1990) 11919. 1135.

7 Other spin-orbit - like operators

During the last few years numerous attempts appeared to improve the lo
al spin density

fun
tional formalism by adding extra terms to the Hamiltonian - this 
on
erns espe
ially

the situation when the ele
tron - ele
tron 
orrelation is important and the valen
e
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ele
tron density is strongly inhomogeneous (e.g. 
ompounds 
ontaining a
tinides or

rare-earth elements). The su

ess of these attempts is in many 
ases spe
ta
ular,

though the stri
t justi�
ation of the methods is la
king. In at least two 
ases: 'Orbital

polarization' and the 'LDA + U ' methods, the extra terms added have analogous form

as the spin-orbit 
oupling dis
ussed above and they may be treated in a similar way.

We will dis
uss the orbital polarization, whi
h imitates the 2nd Hund's rule, it

may be at least partially justi�ed and 
orresponding pa
kage (LAPWOP) is already

available.
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