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I. ELECTRON REPULSION AND DENSITY MATRIX

Let

is a two-electron repulsion and

is a Slater determinant wave function. Then the expectation value of W in state ¥ is
(U|W|¥) = Z[ Yi(DY;(2)[w(1, 2) |1 (1)1;(2)) — (i) (2)[w (1, 2)[i(2);(1))]- (1)

The first and second term in this equation correspond to direct and exchange interaction, respectively.
In the solid state electron structure calculation the one-electron wave functions v; are expressed as linear combina-
tions of the basis set functions ¢y (7)x,(3)
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Substitution of (2) in (1) leads to:
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where we used the fact that w is spin independent w(1,2) = w(7, 7). The elements of the density matrix are:
pkk’ = Z ChorCh - (4)
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Note that the summation is over occupied states only. Inspection of (3) reveals that the direct part contains only
density matrix elements diagonal in spin, while the exchange part depends also on p‘,:,‘;,’; o#ao:
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II. APW-LIKE METHODS, OCCUPATION NUMBER MATRIX

In APW-like methods (APW, LAPW, APW+10) space is divided in the interstitial region and atomic spheres and
the index k of ¢ () becomes wave vector kn =k + K,. In the APW method the basis functions have the form:
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Using (4-6) we determine that the contribution (¥|W|¥); from the 2/ +1 states of selected atom sphere and selected
orbital momentum [ to (¥|W|T) is
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where the elements n27% , of the occupation number matrix are given by:
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Neglecting that u;(r) is nonzero also for r larger than the atomic sphere radius Ry;7, the above integrals can be
expressed through the Slater integrals Fy, [1]:
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The value of Fy is substantially reduced by screening; Fy = U, where U is the Hubbard parameter. Fs, Fy, Fg may
be related to the exchange parameter .J and their screening is weaker.

III. LDA+4+U ENERGY AND POTENTIAL

In the LDA+U method the additional term added to the LSDA total energy is

Erpavu = (|W|¥); — Ey.. (11)
The ’double counting’ part Ej. is diagonal in spin and it is given by:
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where 1, = 1 and n, = (n,) in the ’Fully localized limit’ [2] and ’Around the mean field’ [3] version of the double
summation, respectively.
The matrix elements of the LDA+U potential v, added to VLSDA are given by:
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Using (7, 11-13), this leads to:
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The analysis become simple if we assume that only diagonal matrix elements are nonzero, independent of m,m’
and equal to U:

(mm'|w(F1 s F2)|mllmlll> = 5mm”6m’m”’ U (18)
After simple algebra we get:
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which leads to the potential
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IV. PU ATOM

As a simple example we consider Pu atom. To calculate it we enlarged the lattice constant of fcc Pu to 20 a.u. and
run starting atomic program (LSTART) with small spin polarization nT —nt* = 0.2. In an isolated atom the 5f levels
are split by spin-orbit interaction to manifolds with j = 5/2 and j = 7/2. The lowest state in an exchange field of

Jj=5/2is:
U= U5f(r)[\/§Y3,—3(f) T —\/§3/37—2(f) ] (22)

nlly 5 = 08571, n¥, _, =0.1429; nl; _, = —0.3499. (23)

which gives

Taking U=1, J = 0, it follows ng,,S = —ang,ﬁ = 0.3499. Below are results from WIEN_2k, orb program that show
fair agreement with these analytical results.

Calculation of orbital potential for spin block: dnup
Type of potential: LDA+U
Vorb applied to atom 1 orbit. numbers 3
Approx. SIC method
Atom 1 L= 3 U= 1.000 J= 0.000 Ry
Atom 1 density matrix UPDN block, L= 3

Real part
0.00000 -0.31527 0.00000 0.00000 0.00000 0.00027 0.00000
0.00000 0.00000 -0.41667 0.00000 0.00000 0.00000 -0.00002
0.00000 0.00000 0.00000 -0.46895 0.00000 0.00000 0.00000
-0.00078 0.00000 0.00000 0.00000 -0.48174 0.00000 0.00000
0.00000 0.00074 0.00000 0.00000 0.00000 -0.45235 0.00000
0.00000 0.00000 0.00047 0.00000 0.00000 0.00000 -0.36161
0.00000 0.00000 0.00000 -0.00083 0.00000 0.00000 0.00000

DNUP block of orbital potential
Slater integrals FO, F2, F4, F(6) 1.000 0.000 0.000 0.000 Ry
Atom 1 spin dnup potential real part (Ry)

M= -3 0.00000 0.00000 0.00000 0.00078 0.00000 0.00000 0.00000
M= -2 0.31527 0.00000 0.00000 0.00000 -0.00074 0.00000 0.00000
M= -1 0.00000 0.41667 0.00000 0.00000 0.00000 -0.00047 0.00000
M= 0 0.00000 0.00000 0.46895 0.00000 0.00000 0.00000 0.00083
M= 1 0.00000 0.00000 0.00000 0.48174 0.00000 0.00000 0.00000
M= 2 -0.00027 0.00000 0.00000 0.00000 0.45235 0.00000 0.00000
M= 3 0.00000 0.00002 0.00000 0.00000 0.00000 0.36161 0.00000



V. CONCLUDING REMARKS

For simplicity the above analysis was given for the APW function and assuming that the basis functions ¢ are spin
independent. Both these restrictions are easily removed, in particular (15-17) is still applicable.

It might be argued that for magnetization along the symmetry direction Uﬁm,, = 0 because its presence requires
the presence of the perpendicular exchange-correlation field which would contradict the symmetry, i.e. with the spin
quantization axis z || Cp, 0 still contains $,, §,. This argument is incorrect, however, as §;, §, occur in combination
with the orbital operators making ¢ invariant (similarly as in spin-orbit coupling). Note that vfnTm,, is nonzero if and
only if ”;{m” # 0. The occupation matrix n is symmetrized in WIEN code, as a consequence also © should possess
correct symmetry.

From (10, 17) follows that v#ﬂn” contains terms proportional to U and could be thus quite large once n%m,, # 0.
This could cause problems when converging the scf procedure. In particular this might be the source of troubles when
spin-nondiagonal term was included for fcc Ce and wrong scf solution was obtained [4]. Once the scf is started without
the nondiagonal term and this is included only after the convergency is achieved, correct solution is retained. Note
also that the nondiagonal spin potential tends to decrease the spin. Thus if there are more than one scf solutions its
inclusion will result in reaching the one with smaller spin.
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