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I. ELECTRON REPULSION AND DENSITY MATRIX
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The �rst and se
ond term in this equation 
orrespond to dire
t and ex
hange intera
tion, respe
tively.

In the solid state ele
tron stru
ture 
al
ulation the one-ele
tron wave fun
tions  
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Substitution of (2) in (1) leads to:
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where we used the fa
t that w is spin independent w(1; 2) � w(~r
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Note that the summation is over o

upied states only. Inspe
tion of (3) reveals that the dire
t part 
ontains only

density matrix elements diagonal in spin, while the ex
hange part depends also on �
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II. APW-LIKE METHODS, OCCUPATION NUMBER MATRIX

In APW-like methods (APW, LAPW, APW+lo) spa
e is divided in the interstitial region and atomi
 spheres and

the index k of '
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omes wave ve
tor
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. In the APW method the basis fun
tions have the form:
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Using (4-6) we determine that the 
ontribution h	jW j	i

l

from the 2l+1 states of sele
ted atom sphere and sele
ted

orbital momentum l to h	jW j	i is:
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where the elements n
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Negle
ting that u
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(r) is nonzero also for r larger than the atomi
 sphere radius R
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, the above integrals 
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expressed through the Slater integrals F
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The value of F

0

is substantially redu
ed by s
reening; F

0

= U , where U is the Hubbard parameter. F
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; F
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may

be related to the ex
hange parameter J and their s
reening is weaker.

III. LDA+U ENERGY AND POTENTIAL

In the LDA+U method the additional term added to the LSDA total energy is

E
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alized limit' [2℄ and 'Around the mean �eld' [3℄ version of the double

summation, respe
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The matrix elements of the LDA+U potential v̂, added to

^

V

LSDA

are given by:

v

��

0

mm

0

=

�E

LDA+U

�n

��

0

mm

0

: (14)

Using (7, 11-13), this leads to:

v

""

mm

00

=

X

m

0

m

000

[(n

""

m;m

00

+ n

##

m;m

00

)hmm

0

jw(~r

1

; ~r

2

)jm

00

m

000

i � n

""

m;m

00

hmm

0

jw(~r

1

; ~r

2

)jm

000

m

00

i℄� (15)

�Æ

mm

00

[U(n� �=2)� J(n

"

� �

"

=2)℄

v

##

mm

00

=

X

m

0

m

000

[(n

""

m;m

00

+ n

##

m;m

00

)hmm

0

jw(~r

1

; ~r

2

)jm

00

m

000

i � n

##

m;m

00

hmm

0

jw(~r

1

; ~r

2

)jm

000

m

00

i℄� (16)

�Æ

mm

00

[U(n� �=2)� J(n

#

� �

#

=2)℄



3

v

#"

mm

00

= �

X

m

0

m

000

n

"#

m;m

00

hmm

0

jw(~r

1

; ~r

2

)jm

000

m

00

i (17)

The analysis be
ome simple if we assume that only diagonal matrix elements are nonzero, independent of m;m
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After simple algebra we get:
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whi
h leads to the potential

v

��

mm

= U(

�

2

� n

��

mm

(20)

v

��

0

mm

0

= �Un

�

0

�

m

0

m

(21)

IV. PU ATOM

As a simple example we 
onsider Pu atom. To 
al
ulate it we enlarged the latti
e 
onstant of f

 Pu to 20 a.u. and

run starting atomi
 program (LSTART) with small spin polarization n

"

�n

#

= 0:2. In an isolated atom the 5f levels

are split by spin-orbit intera
tion to manifolds with j = 5=2 and j = 7=2. The lowest state in an ex
hange �eld of

j = 5=2 is:
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whi
h gives
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Taking U=1, J = 0, it follows v

"#

�2;�3

= �n

"#

�3;�2

= 0:3499. Below are results from WIEN 2k, orb program that show

fair agreement with these analyti
al results.

Cal
ulation of orbital potential for spin blo
k: dnup

Type of potential: LDA+U

Vorb applied to atom 1 orbit. numbers 3

Approx. SIC method

Atom 1 L= 3 U= 1.000 J= 0.000 Ry

Atom 1 density matrix UPDN blo
k, L= 3

Real part

0.00000 -0.31527 0.00000 0.00000 0.00000 0.00027 0.00000

0.00000 0.00000 -0.41667 0.00000 0.00000 0.00000 -0.00002

0.00000 0.00000 0.00000 -0.46895 0.00000 0.00000 0.00000

-0.00078 0.00000 0.00000 0.00000 -0.48174 0.00000 0.00000

0.00000 0.00074 0.00000 0.00000 0.00000 -0.45235 0.00000

0.00000 0.00000 0.00047 0.00000 0.00000 0.00000 -0.36161

0.00000 0.00000 0.00000 -0.00083 0.00000 0.00000 0.00000

DNUP blo
k of orbital potential

Slater integrals F0, F2, F4, F(6) 1.000 0.000 0.000 0.000 Ry

Atom 1 spin dnup potential real part (Ry)

M= -3 0.00000 0.00000 0.00000 0.00078 0.00000 0.00000 0.00000

M= -2 0.31527 0.00000 0.00000 0.00000 -0.00074 0.00000 0.00000

M= -1 0.00000 0.41667 0.00000 0.00000 0.00000 -0.00047 0.00000

M= 0 0.00000 0.00000 0.46895 0.00000 0.00000 0.00000 0.00083

M= 1 0.00000 0.00000 0.00000 0.48174 0.00000 0.00000 0.00000

M= 2 -0.00027 0.00000 0.00000 0.00000 0.45235 0.00000 0.00000

M= 3 0.00000 0.00002 0.00000 0.00000 0.00000 0.36161 0.00000
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V. CONCLUDING REMARKS

For simpli
ity the above analysis was given for the APW fun
tion and assuming that the basis fun
tions ' are spin

independent. Both these restri
tions are easily removed, in parti
ular (15-17) is still appli
able.

It might be argued that for magnetization along the symmetry dire
tion v
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� 0 be
ause its presen
e requires

the presen
e of the perpendi
ular ex
hange-
orrelation �eld whi
h would 
ontradi
t the symmetry, i.e. with the spin

quantization axis z k C

n

, v̂ still 
ontains ŝ

x

; ŝ

y

. This argument is in
orre
t, however, as ŝ
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; ŝ

y

o

ur in 
ombination

with the orbital operators making v̂ invariant (similarly as in spin-orbit 
oupling). Note that v

#"
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only if n
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upation matrix n̂ is symmetrized in WIEN 
ode, as a 
onsequen
e also v̂ should possess


orre
t symmetry.

From (10, 17) follows that v
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ontains terms proportional to U and 
ould be thus quite large on
e n

"#

m;m

00
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This 
ould 
ause problems when 
onverging the s
f pro
edure. In parti
ular this might be the sour
e of troubles when

spin-nondiagonal term was in
luded for f

 Ce and wrong s
f solution was obtained [4℄. On
e the s
f is started without

the nondiagonal term and this is in
luded only after the 
onvergen
y is a
hieved, 
orre
t solution is retained. Note

also that the nondiagonal spin potential tends to de
rease the spin. Thus if there are more than one s
f solutions its

in
lusion will result in rea
hing the one with smaller spin.
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