
UNIVERSITEIT ANTWERPEN 
 
Faculteit Wetenschappen 
Departement Fysica 
 
 
 
 
 
 
 
 
 
 
 
Ab initio berekening van relativistische elektronenergieverliesspectra 
 
The ab initio calculation of relativistic electron energy loss spectra 
 
 
 
 
Proefschrift voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen 
aan de Universiteit Antwerpen te verdedigen door 
 
This thesis is submitted for the degree of Doctor of Philosophy at the University of 
Antwerp by 
 
Kevin Jorissen 
 
 
 
 
 
Antwerpen, 2007 
 
Promotoren : 
Supervisors : 
 
Prof. Dirk van Dyck 
Prof. Dirk Lamoen 
 



 2

 
1. MOTIVATION......................................................................................................................................... 4 

1.A. OF GREEKS, ENGINEERS, AND BITS. ..................................................................................................... 4 
1.B. THE FOCUS OF THIS DISSERTATION ...................................................................................................... 6 

2. NEDERLANDSE SAMENVATTING.................................................................................................... 9 
3. GENERAL INTRODUCTION ............................................................................................................. 13 

3.A. CONTENT OF THIS DISSERTATION ...................................................................................................... 13 
3.B. ELECTRON ENERGY LOSS SPECTROSCOPY IN THE TRANSMISSION ELECTRON MICROSCOPE ................ 15 

3.b.1. EELS as a key to the electronic structure ................................................................................. 15 
3.b.2. EELS compared to other techniques. ........................................................................................ 28 
3.b.3. Ab initio calculation of EELS.................................................................................................... 30 

3.C. DENSITY FUNCTIONAL THEORY ......................................................................................................... 32 
3.c.1. The Kohn-Sham equations ........................................................................................................ 32 
3.c.2. Implementation in WIEN2k ....................................................................................................... 36 

3.D. GREEN’S FUNCTION THEORY ............................................................................................................. 37 
3.d.1. Multiple scattering formula for the cross section ..................................................................... 37 
3.d.2. Implementation in FEFF8......................................................................................................... 40 

3.d.2.1 The FEFF8 program............................................................................................................................ 40 
3.d.2.2 The final state rule............................................................................................................................... 41 
3.d.2.3 Potentials and Fermi energy ................................................................................................................ 42 
3.d.2.4 Self-Energy ......................................................................................................................................... 43 
3.d.2.5 Core hole ............................................................................................................................................. 43 
3.d.2.6 ELNES and EXELFS.......................................................................................................................... 44 
3.d.2.7 Broadening .......................................................................................................................................... 47 
3.d.2.8 Orientation dependence....................................................................................................................... 47 
3.d.2.9 Non-dipole transitions ......................................................................................................................... 48 
3.d.2.10 Debye-Waller factors ........................................................................................................................ 49 
3.d.2.11 Density of States ............................................................................................................................... 51 

4. RELATIVISTIC CALCULATIONS OF ELECTRON ENERGY LOSS SPECTRA...................... 52 
4.A. GENERAL RELATIVISTIC THEORY....................................................................................................... 53 
4.B. THE DIPOLE APPROXIMATION ........................................................................................................... 58 
4.C. ANGULAR MOMENTUM EXPANDED FORMALISM ................................................................................ 60 

4.c.1. General theory of the DDSCS in a l,m-representation.............................................................. 60 
4.c.2. The dipole terms and correspondence to Schattschneider et al. ............................................... 63 
4.c.3. The cross terms. ........................................................................................................................ 66 
4.c.4. The monopole term.................................................................................................................... 67 
4.c.5. The quadrupole terms................................................................................................................ 68 

4.D. IMPLEMENTATION IN THE WIEN2K PROGRAM TELNES2................................................................. 69 
4.d.1. The L/APW basis set and the l,m-decomposition ...................................................................... 70 
4.d.2. Integrating the cross-section over beam convergence and detector aperture. ......................... 73 
4.d.3. Broadening the spectrum. ......................................................................................................... 76 

4.E. IMPLEMENTATION IN THE FEFF PROGRAM ........................................................................................ 77 
4.F. UNDERSTANDING AND SOLVING THE MAGIC ANGLE FIASCO .............................................................. 82 

4.f.1. Non-relativistic calculation of the magic angle. ........................................................................ 82 
4.f.2. Experimental measurements of the magic angle........................................................................ 86 
4.f.3. Improvements within the non-relativistic theory?...................................................................... 90 

4.f.3.1 Non-dipole contributions. .................................................................................................................... 90 
4.f.3.2 Cross-terms. ......................................................................................................................................... 92 
4.f.3.3 Beyond the small q approximation. ..................................................................................................... 93 
4.f.3.4 Beyond the small angle approximation. ............................................................................................... 94 
4.f.3.5 Conclusion. .......................................................................................................................................... 94 

4.f.4. Relativistic calculation of the magic angle. ............................................................................... 95 
4.f.5. FEFF and TELNES2 calculations of the magic angle. .............................................................. 98 



 3

5. CORE HOLE CALCULATIONS OF ELECTRON ENERGY LOSS SPECTROSCOPY 
WITHOUT THE SUPERCELL.............................................................................................................. 107 

5.A. INTRODUCTION................................................................................................................................ 107 
5.B. THE K-SPACE MULTIPLE SCATTERING FORMALISM........................................................................... 109 

5.b.1. Introducing the core hole. ....................................................................................................... 111 
5.b.2. Monoatomic lattices................................................................................................................ 112 
5.b.3. Calculation of the KKR structure factors................................................................................ 112 

5.C. IMPLEMENTATION IN THE FEFF8 PROGRAM .................................................................................... 117 
5.c.1. Convergence of the k-space FEFF8 calculations.................................................................... 118 

5.D. VERIFICATION OF THE REAL SPACE FINITE CLUSTER APPROXIMATION............................................. 120 
5.E. CORE HOLE EELS WITHOUT THE SUPERCELL................................................................................... 122 

5.e.1. Problems with the supercell core hole approach .................................................................... 122 
5.e.1.1 Supercell size converge ..................................................................................................................... 122 
5.e.1.2 Which core hole should one use? ...................................................................................................... 126 

5.e.2. Results using k-space FEFF8.................................................................................................. 129 
6. CONCLUSIONS................................................................................................................................... 133 

6.A. ‘STATE OF THE SIMULATIONS” FOR TELNES2 AND FEFF .............................................................. 133 
6.B. KEY RESULTS................................................................................................................................... 135 
6.C. OUTLOOK ........................................................................................................................................ 136 

7. ACKNOWLEDGMENTS.................................................................................................................... 137 
8. APPENDICES ...................................................................................................................................... 139 

8.A. BIBLIOGRAPHY................................................................................................................................ 139 
8.B. GLOSSARY....................................................................................................................................... 140 
8.C. THE WIEN2K PROGRAM TELNES2 ................................................................................................ 141 

8.c.1. Introduction............................................................................................................................. 141 
8.c.2. What is calculated? ................................................................................................................. 142 
8.c.3. Using the program. ................................................................................................................. 142 
8.c.4. The master input file case.innes. ............................................................................................. 143 
8.c.5. Files used by the TELNES2 program. ..................................................................................... 148 
8.c.6. Practical considerations. ........................................................................................................ 149 
8.c.7. Compatibility with TELNES. ................................................................................................... 150 
8.c.8. Major differences with respect to the previous release (i.e., TELNES)................................... 150 
8.c.9. Programmer’s Guide............................................................................................................... 152 

8.c.9.1 Style................................................................................................................................................... 152 
8.c.9.2 Description of all program units. ....................................................................................................... 152 

8.D. THE FEFF8 EELS PROGRAM........................................................................................................... 153 
8.E. THE FEFF8 K-SPACE PROGRAM. ...................................................................................................... 167 

9. REFERENCES ..................................................................................................................................... 173 
 
 
 
 



 4

1. Motivation 
 
 

1.a. Of Greeks, engineers, and bits. 
 
The motivational introduction to a dissertation is beyond doubt the most entertaining part 
for its writer to work on, for here he is allowed to be a little frivolous, while in the rest of 
his work he must abandon poetry in favor of the modest language of scientific writing.  
For now, though, we may indulge in a few pages of storytelling. 
 
Science serves, of course, one major goal : to understand the world.  This often means 
reducing the utterly vast amount of information of all that is and happens; it means 
distilling it into basic laws and unifying principles.  Such analytic power also opens up 
ways to predict the natural world, and to control it. 
That this approach has at all been successful, may well be called remarkable. 
Physics is perhaps the field where the principle of reducing raw information to rules of 
logic and mathematics can be observed clearest.  Of course science itself is built on a 
foundation of philosophy and reasoning, but the most basic building block within science, 
its most crucial assertion is that matter, in all its forms that we observe in the natural 
world, is made of atoms1, and derives its complex behavior from the behavior of these 
atoms.  This concept is commonly attributed to the Greek philosophers of the first 
millennium BC, who after all came up with the term “atom” (meaning “indivisible”, or, 
more literally, “uncuttable”).  Through refinements based on observations in particle 
accelerators and telescopes, we have ended up with a handful of elementary particles and 
four forces.  It is conceivable to think of all scientific knowledge as stemming from that 
standard model, linked to it by a path of increasing complexity.  E.g., from the physical 
knowledge of basic interactions one can derive the chemical properties of molecules and 
their interactions, then move on to the properties of biological tissues and organisms ; in a 
next step up the ladder of complexity, psychoanalysis describes the workings of the mind, 
and higher up still, social sciences focus on interactions between beings.  Each level of 
complexity is worthy of study, as it spawns new patterns and features that can be cast as 
laws.  The current paradigm of scientific knowledge encompasses such concepts as the 
Big Bang, evolution and genetics, and the origin of language and speech. 
Most of the examples given so far have focused on understanding –as indeed did the 
ancient Greek philosophers.  (It has been pointed out that their science was based mostly 
on observation, and that experiments were few and far between.)  As hinted at earlier, 
knowledge is power : it can be used to manipulate the natural world.  Enter the engineers.  
From knowledge of biology they have developed genetically modified crops, and also 
hepatitis vaccinations.  Psychoanalysis has led to therapy, social science to strategies for 
political campaigns.  The chemical magic of oil is the basis for much of our economy. 
And again, the physical science, in its incarnation in this dissertation, serves as another 
perfect example.  For this text deals with materials science – the lore of understanding 
and designing materials, explaining and controlling their properties in terms of their 
atomic structure.  The basic assertion of science – that complex behavior can be derived 
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from elementary interactions on an “atomic” level - is in a very literal way the driving 
force of materials science.  This is clear both in the theory of materials science – where, 
e.g., the behavior of electrons in a lattice, or scattering properties (i.e., interactions) are 
studied – and also in its applications, which range from designing faster gates for 
computer transistors, to developing more efficient solar cells for energy production, to 
nanotechnology, to lighter composite materials for the construction of aircraft, …  All 
unified in one line of physics, the Schrödinger equation (or Dirac equation in the 
relativistic case). 
 
The opportunity for specialization is dazzling.  In this dissertation, I will focus on a 
particular technique used in materials science : electron microscopy.  All observations 
require interaction of the observer and the observed object, and in electron microscopy, a 
beam of electrons is used to probe a sample, similarly to the use of light in a conventional 
light microscope.  Surely the most spectacular feature of electron microscopy is its 
superior spatial resolution, which allows probing individual atom columns of a material.  
As the relevant scale of materials decreases (think nanotechnology), this is a big 
advantage. 
Interactions can generally be divided into elastic interactions, where no energy is 
exchanged between probe and sample; and inelastic interactions, where a net energy 
transfer occurs between probe and sample.  Electron energy loss spectroscopy, the focus 
of this work, belongs to the latter category.  The sample’s properties are investigated by 
measuring how it absorbs energy from the beam. 
 
Obviously, there are several ways one can study a given subject.  Two options are 
theoretical work, and observations or experiments.  A new, third pillar of research has 
emerged in the previous century.  Since the number-crunching calculational power of 
computers reached a critical mass, they have been used to study problems in almost every 
field of science.  Materials science, where the behavior of (mostly) electrons as described 
by solutions of the Dirac or Schrödinger equation determines material properties of 
interest, is again an excellent example.  Computer calculations, both ab initio and using 
empirical information, have become more robust and powerful as computational 
resources and computational science steadily grew over the last few decades.  The ability 
to obtain numerical solutions to problems for which analytical solutions or accurate 
measurements are hard or impossible to find, has significantly widened the scope of 
materials science.  The calculations have not only served to make theoretical predictions 
(indeed, the often-quoted “design of materials” is still in its infancy), but has enjoyed 
massive application in interpreting experimental data.  The wealth of information on 
electronic structure that is contained in an electron energy loss spectrum, for example, is 
hard to extract, and theoretical (i.e., computational) reference is often needed. 
Apart from opening up otherwise inaccessible applications, numerical work also has the 
potential to validate our understanding of phenomena.  In the words of R. P. Feynman, 
“If I can’t calculate it, I don’t understand it”. 
 
In spite of the tremendous successes of computational science, one still encounters the 
occasional prejudice.  Managing a hundred thousand lines of Fortran source code is, to 
some, less noble an endeavor than, say, fine-tuning the calibration of a microscope, or 
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counting Feynman diagrams.  And the person who first conceived of the equations to be 
solved, inventing Density Functional Theory, say, is usually regarded as having higher 
scientific merit than the person who solves these equations by teasing its solutions out of 
a central processing unit.  (As an aside, it is heartening to the computational scientist to 
learn that their conceptual fathers from the theoretical field do hold their computational 
colleagues in high regard.) 
 
This dissertation is clearly a piece of computational science – but also aims to test the 
fundamental theory of EELS. 
  
 

1.b. The focus of this dissertation 
 
What is the theme of this dissertation?  So far, I have descended into specialization as 
follows : 
Physics, materials science, electron microscopy, electron energy loss spectroscopy, 
computational work. 
Yet we need to decide more specifically where to focus my research work. 
 
Let’s situate this work by exploring a few lines of thought. 
 
First, theories go through certain stages of growth.  There are very new theories and 
techniques; state of the art, high-tech science that is still in a stage of conceptual 
development.  It is in the hands of theoreticians, who study it on model systems, looking 
for proof of principle type applications. 
On the other hand of the spectrum are theories that are so well understood and established 
that they can be readily applied by people who have only basic understanding of them ; 
they are typically integrated in black box type tools, that perhaps come pre-installed with 
some instrument; or they have completed the long migration from obscure journals into 
undergrad text books. 
The theory of time dependent density functional theory (TDDFT), to name relevant 
examples, still seems to partly be in the developers’ phase, with people spending much 
effort trying to find decent kernels.  Ground-state density functional theory, on the other 
hand, is so well established and has been so widely tested that it is now used routinely by 
people who would be hard pressed to say what exactly a functional is. 
 In between are people who work with theories that are fairly well understood, and 
improve their methodology to make them more useful. 
While rough black box and more acceptable “grey box” tools are certainly available to 
the scientific community, it is also clear that much improvement is still desired in 
electron energy loss simulation.  It is in that middle field that I have therefore chosen to 
work.  I did not wish to simply routinely apply black box tools to new materials ; nor did 
I want to spend my five years of doctoral research fiddling with a kernel for TDDFT that 
matches some uniform electron gas limit exactly.  I want to do methodological, 
theoretical materials science work that doesn’t consist of applications, but definitely has 
application in mind all along. 
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Not only the theory matures ; so do its applications.  Much ink has been spent discussing 
the virtues of quantitative electron energy loss spectroscopy.  The truth is, we still haven’t 
seen too much truly quantitative EELS.  Quantitative EELS requires two things : accurate 
and well characterized experiments, and solid interpretation of the measurements – 
probably involving accurate and precise ab initio calculations.  The quality of 
measurements has surely undergone tremendous progress over time (although there’s 
more to be said about quantitativeness than just the specs of the microscope) ; the 
calculations that we are concerned with in this dissertation have quite a way to go. 
Focusing on the computational side, what type of studies are out there?  With a little bit 
of humor (remember, we’re still in the motivational chapter), but not meaning any real 
disrespect,  I distinguish (at least) four kinds of studies : 
1. “Look what I can do!”  Sometimes, ab initio calculated EELS-spectra are published for 
interesting materials, just like that.  In all fairness, I quote my own work here (Titantah et 
al.2). 
2. “Excellent agreement!”  In a large number of publications, a measured spectrum of a 
known structure is compared to a calculated spectrum, and excellent agreement, by some 
standard of excellence, is proclaimed.  The system is not always completely known, and 
some information on it may be extracted by means of comparison to the calculations. 
3. “Tell me something I don’t know.”  Achieving some degree of excellent agreement for 
a known system is of course nice and all, but how exciting is that really?  A useful 
technique must be able to deliver previously unknown or uncertain information. 
4. “Pssst …  The universe is not face centered cubic!  (It’s dirty!)”  Calculations are 
usually done for model systems, not taking into account the many irregularities of any 
real-life sample – its shape, contaminations, temperature, etc.  We need to move towards 
modeling more realistic systems if we want to achieve true quantitative research. 
 
If the state of the art of EELS simulation had to be summed up precisely, I would, in all 
fairness, admit that “we cannot really calculate an EELS spectrum”.  Is such harshness 
warranted?  I claim that : 
1/ Its fundamental theory and its implementation are still unsolved even for simple “toy 
models” ; 
and, in line with our discussion above, 
2/ The world is not a toy model. 
 
While there’s certainly no shortage of excellent theoretical EELS calculations, these 
successes are not consistent : there are too many systems for which the calculations don’t 
work well.  Issues such as many body and core hole effects have not fully been resolved 
yet.  Theories based on the Dynamic Form Factor need to be generalized to the Mixed 
Dynamic Form Factor to account for interference effects.  Multiplets need to be further 
incorporated into the calculations.  Indeed, in Chapter 4 we will show how, just a few 
years ago, the whole formalism was based on the wrong (non-relativistic) theory.  
Despite the progress reported here and in other scientific literature, the calculations we 
are concerned with still have a long way to go.   
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Additionally, the improving quality of experiments keeps raising the bar for ab initio 
EELS calculations, as previously indiscernible discrepancies are revealed.  Also, truly 
quantitative research demands high accuracy calculations, as “the peaks are in the right 
positions” is simply not good enough anymore. 
 
Perhaps the state of computational EELS is characterized well by R. Nicholls who 
studied EELS of fullerene materials in3 : 
“It might be thought that a straightforward approach would be to compare experimental 
EEL spectra with spectra simulated from model structures, and then to refine the model 
structure to improve the agreement.  The recent scientific literature shows that it is very 
difficult to simulate EEL spectra with sufficient accuracy to enable a model refinement to 
be carried out in this way.  The strategy employed in this study is to find features in the 
experimental EEL spectra which are significantly different for different fullerene 
materials, and then to explore which details of the model structures affect these 
significant features.  This strategy involves relating changes in the spectra to changes in 
the model, rather than trying to reproduce the experimental data.” 
 
While this is on some level a tribute to the usefulness of ab initio EELS, it also points out 
its deficiencies and limitations. 
 
 
As will become more apparent from our discussion of the theory of electron energy loss 
spectroscopy in later chapters, the technique provides us with access to an overwhelming 
wealth of information – potentially the density matrix of a sample.  To uncover that 
information in a truly quantitative EELS-experiment, we must then solve the two 
problems stated above :  
1/ Learn how to correctly calculate the absorption spectrum of a sample ; and 
2/ Learn how to do this calculation for a realistic sample. 
 
This thesis focuses primarily on the former problem, although not without regard to the 
latter. 
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2.Nederlandse samenvatting 
 
 
Elektronenergieverliesspectroscopie (EELS) is een waardevolle techniek voor 
materiaalonderzoek op atomaire schaal.  EELS bestaat eruit een bundel van snelle 
elektronen ( ~ 100 keV) doorheen een sample te sturen en het energieverlies van de 
bundel met een spectrometer te registreren.  Een fractie van de bundelelektronen 
interageert immers met het specimen, waarbij energie en impuls overgedragen kan 
worden.  Een deel van de uittredende bundel heeft dus een andere energie en richting dan 
voor interactie met het sample.  Men meet deze distributie van energieverliezen en 
verstrooiingshoeken op met een spectrometer en verkrijgt zo een EELS-spectrum. 
Aangezien de energie-absorptie door het sample aangewezen is op de beschikbaarheid 
van onbezette elektronorbitalen met een excitatie-energie die overeenkomt met het 
energieverlies van de bundel, is het EELS-spectrum een ‘fingerprint’ van de lokale 
onbezette toestandsdichtheid, of korter, van de lokale elektronische structuur van het 
sample.  In het bijzonder ‘edges’, signalen afkomstig van excitaties van een discreet 
kernniveau van een atoom in het sample (bv. 1s of 2p), geven aan welke elementen in het 
specimen aanwezig zijn en in welke hoeveelheid.  De uitmuntende ruimtelijke resolutie 
en gevoeligheid van EELS, gekoppeld aan een steeds verbeterende energieresolutie, 
maken dat EELS een superieure techniek is voor metingen van de elektronische structuur 
op atomaire schaal.  Die elektronische structuur is op zich verbonden met tal van 
materiaaleigenschappen die van belang zijn voor (technologische) toepassingen.  De hoge 
ruimtelijke resolutie is duidelijk relevant in het tijdperk van de nanowetenschap en de 
nanotechnologie. 
 
Om de schat aan informatie in het EELS-spectrum te kunnen ontsluiten, is het vaak 
onontbeerlijk om metingen te kunnen vergelijken met ab initio berekende spectra, 
aangezien de interpretatie van een spectrum (de link tussen spectrum en elektronische 
structuur of materiaaleigenschappen) niet triviaal is.  Los daarvan is computationele 
materiaalfysica ook onontbeerlijk om theoretische inzichten te valideren en te verdiepen. 
 
Deze thesis heeft tot doel de ab initio berekening van EELS-spectra te verbeteren.  
Hoewel dergelijke berekeningen al met succes zijn uitgevoerd, blijven er teveel 
discrepanties tussen theorie en realiteit opdat men eenduidig kwantitatief EELS-
onderzoek zou kunnen doen.  De twee bijdragen geleverd in dit werk zijn ten eerste een 
relativistisch formalisme voor EELS, en ten tweede een strategie om “core hole” spectra 
te berekenen door middel van de “final state rule” zonder “supercel”.  Deze begrippen 
worden hieronder verduidelijkt – laten we voorlopig opmerken dat het een verbetering 
betreft van een methode om meerdeeltjesinteracties in het excitatieproces te benaderen. 
Deze twee sporen van vooruitgang zijn geimplementeerd in twee veelgebruikte ab initio 
modules voor de berekening van EELS (FEFF en WIEN2k+TELNES2), en zijn dus 
beschikbaar voor de wetenschappelijke gemeenschap.  FEFF berekent de elektronische 
structuur van een cluster atomen in de reele ruimte door het berekenen van de Greense 
functie.  WIEN2k berekent de elektronische structuur van een oneindig periodisch rooster 
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van atomen (een kristal) in de reciproke ruimte door het berekenen van elektronorbitalen 
volgens dichtheidsfunctionaaltheorie of DFT.  De twee methodes zijn complementair en 
het is dus nuttig om over beide te beschikken. 
 
Hoofdstuk 3 is een algemene inleiding waarin de gebruikte begrippen en theorieen nader 
worden verklaard.  De principes van EELS worden nader beschreven in hoofdstuk 3.b.  
Daarna wordt in hoofdstuk 3.c de dichtheidsfunctionaaltheorie bondig beschreven, 
waarop WIEN2k is gebaseerd.  Tenslotte wordt in hoofdstuk 3.d de Greense 
functiemethode, basis voor FEFF, uit de doeken gedaan, met ruime illustraties aan het N 
K spectrum van GaN. 
 
Het eerste onderzoeksonderwerp (hoofdstuk 4) betreft relativistische berekening van 
EELS.  De bundelelektronen die gebruikt worden in het experiment hebben typisch een 
snelheid van 50-80% van de lichtsnelheid, ruim voldoende opdat een relativistische 
beschrijving van de interactie belangrijk zou zijn.  Dergelijke effecten werden recent 
beschreven door Jouffrey et al.,4 die opmerkten dat er een contractie van het veld van het 
bundelelektron optreedt in de richting van voortbeweging, die beschreven kan worden 
alsof de impulsoverdracht proportioneel met het kwadraat van de snelheid contracteert 
langs dezelfde richting.  Deze beschrijving liet hen toe de enorme discrepantie te 
verklaren tussen oudere, niet-relativistische berekeningen van de zogenaamde magic 
angle en de experimenteel gevonden magic angle.  De magic angle is een bijzondere 
waarde van de apertuur van de EELS-detector waarbij de meting haar onafhankelijkheid 
van de orientatie van het sample ten opzichte van de bundel verliest.  Dit is in eerste orde 
een materiaalonafhankelijke grootheid, en daardoor een directe test van de onderliggende 
theorie van EELS.  De magic angle is van praktisch nut omdat orientatieafhankelijkheid 
de interpretatie van experimenten erg kan bemoeilijken. 
 
In deze thesis hebben we de relativistische theorie verder ontwikkeld.  Jouffrey et al.4 
maakten de benadering dat de overgedragen impuls klein is ; wij vermijden deze 
beperking en ontwikkelen een algemener formalisme, gedefinieerd in een ontwikkeling in 
bolfuncties l,m .  Niet alleen is de theorie daarmee algemener, we vinden ook correcties 
van de orde 10% op de berekende waarde van de magic angle voor het C K spectrum van 
grafiet.  Daarnaast berekenen we ook de werkzame doorsnede als functie van de 
verstrooiingshoek en vinden zeer goede overeenkomst met metingen (in tegenstelling tot 
niet-relativistische berekeningen). 
Het algemene relativistische formalisme is geimplementeerd in de DFT-code 
WIEN2k+TELNES2.  Het benaderde relativistische formalisme (Jouffrey et al.4) is 
geimplementeerd in zowel WIEN2k+TELNES2 alsook in de Multiple Scattering code 
FEFF. 
 
Hoofdstuk 4 is georganiseerd als volgt.  In hoofdstuk 4.a geven we een algemene 
afleiding van de werkzame doorsnede voor EELS vertrekkende van een relativistische 
Hamiltoniaan.  In hoofdstuk 4.b bespreken we de zogenaamde dipoolbenadering, die de 
resultaten van Jouffrey et al. geeft.  In hoofdstuk 4.c ontwikkelen we het algemenere 
relativistische formalisme dat voor willekeurige impulsoverdracht en ook voor niet-
dipooltransities geldig is.  We bespreken de implementatie van dit algemene formalisme 
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in de WIEN2k+TELNES2 code in hoofdstuk 4.d.  We bespreken de implementatie van 
het benaderde dipoolformalisme in FEFF in hoofdstuk 4.e.   Tenslotte bestuderen we de 
belangrijke toepassing van de ‘magic angle’ in hoofdstuk 4.f., toegepast op het C K 
spectrum van grafiet.  We tonen experimentele metingen, bekijken het falen van de niet-
relativistische theorie, en geven de relativistische resultaten van zowel analytische 
berekeningen als FEFF en WIEN2k berekeningen.  We merken op dat het algemenere 
formalisme licht superieure resultaten geeft (~ 10%). 
 
 
Het tweede spoor van de thesis heeft een volledig ander onderwerp (hoofdstuk 5).  De 
excitatie van het sample tengevolge van energieuitwisseling met de bundel is in wezen 
een dynamisch proces.  Nemen we als voorbeeld een grafietspecimen.  Indien de bundel 
meer dan 284 eV aan energie overdraagt aan een koolstofatoom in het sample, kan het 1s 
elektron van dit atoom geexciteerd worden naar een onbezette toestand boven het Fermi-
niveau.  (De excitatieenergie van het 1s orbitaal is ongeveer 284 eV.)  Tijdens die 
excitatie is er echter interactie tussen het 1s elektron en het “gat” of “core hole” dat het 
achterlaat in het 1s-orbitaal.  De interactie beinvloedt het EELS spectrum sterk.  Deze 
“core hole” interactie is in principe een meerdeeltjeseffect.  Omdat 
meerdeeltjesberekeningen echter veel moeilijker en CPU-intensiever zijn dan 
eendeeltjesberekeningen, is de standaard voor EELS-berekeningen op dit moment de 
zogenaamde “Final State Rule” of FSR, waarbij het core hole statisch berekend wordt 
door een geexciteerd atoom met core hole in het 1s-orbitaal als een onzuiverheid in het 
grafietkristal te plaatsen, en vervolgens het excitatiespectrum van dat atoom te berekenen 
in de eendeeltjesbenadering.  Afgezien van het feit dat dit een benadering is, heeft dit 
bijkomende nadelen. Ten eerste kan de hoeveelheid lading die uit de 1s toestand wordt 
weggehaald, als een variabele screeningparameter gebruikt worden, hetgeen soms toelaat 
betere resultaten te bekomen, maar dit ten koste van (theoretische en praktische) 
eenduidigheid.  Ten tweede werken bandstructuurmethodes zoals WIEN2k (en vele 
vergelijkbare codes, die de uitverkoren methode zijn om de elektronische structuur van 
kristallen te berekenen) met een ‘eenheidscel’ : een kleine bouwsteen die een oneindig 
aantal keren wordt herhaald om een perfect periodisch kristal te bekomen. De “core hole 
onzuiverheid” moet in een grotere supercel geplaatst worden om zinnige resultaten te 
bekomen, en de vereiste grootte van deze supercel kan alleen door een onvoorspelbare 
convergentiestudie bepaald worden.  Voor methodes in de reele ruimte, zoals FEFF, is dit 
tweede probleem niet van toepassing – maar deze methodes benaderen dan weer het 
(quasi-) oneindige kristal door een eindige cluster van atomen, hetgeen opnieuw een 
benadering is die een convergentiestudie vereist (zij het een die doorgaans eenvoudiger 
is). 
Samengevat zijn deze FSR + core hole + supercel-berekeningen geen routinewerk. 
 
In deze thesis werd de FEFF-code, die traditioneel in de reele ruimte werkt, aangevuld 
met een formalisme dat op KKR-theorie gebaseerd is en met Greense functies in de 
reciproke ruimte werkt.  Ten eerste maakt dit de Multiple Scattering methode 
eenvoudiger en correcter voor berekeningen aan periodische systemen.  Ten tweede laat 
de beschikbaarheid van beide sporen – reele en reciproke ruimte, of “short range” en 
“long range” formalismes – toe om de gekende equivalentie van beiden voor het 
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beschrijven van periodische systemen zeer direct te verifieren.  Deze test hebben we 
succesvol uitgevoerd voor verschillende materialen, o.a. het Si K spectrum. 
 
De belangrijkste winst is echter dat we nu binnen eenzelfde berekening kunnen 
overschakelen van reciproke naar reele ruimte, en daarmee het beste van beide werelden 
kunnen combineren.  Het is dan ook mogelijk om de elektronische structuur van een 
perfect periodisch systeem (zeg het grafietkristal in de grondtoestand, zonder EELS-
excitatie en core hole) zonder “short range” benadering in de reciproke ruimte te 
berekenen, en dan de overeenkomstige Greense functie in de reele ruimte te berekenen.  
Het “core hole” kan dan in de reele ruimte worden toegevoegd, waar er geen 
eenheidscellen of supercellen zijn, en een enkele onzuiverheid perfect kan worden 
berekend.  Deze nieuwe strategie – “FSR core hole EELS zonder de supercel” is 
geimplementeerd in de Multiple Scattering code FEFF.  We hebben dergelijke 
berekeningen uitgevoerd voor de N K edge van GaN.  We vinden zeer goede 
overeenkomst met het experiment, beter dan met andere methodes.  We vergelijken 
bovendien met supercelberekeningen uitgevoerd met de DFT/bandstructuurcode 
WIEN2k+TELNES2, en we vinden dat de DFT-resultaten naar de “FSR core hole EELS 
zonder de supercel”-resultaten lijken te convergeren die we met FEFF hebben bekomen. 
 
Hoofdstuk 5 is georganiseerd als volgt.  In hoofdstuk 5.b beschrijven we de theorie voor 
Greense functiemethodes in de reciproke ruimte.  In hoofdstuk 5.c bespreken we de 
implementatie ervan in FEFF en illustreren dergelijke berekeninge.  In hoofdstuk 5.d 
testen we de equivalentie van beschrijvingen in reele en reciproke ruimte aan de hand van 
het Si K spectrum.  In hoofdstuk 5.e tenslotte passen we de “FSR core hole EELS zonder 
de supercel” toe op het N K spectrum van GaN. 
 
 
Hoewel de theorie en ab initio berekening van EELS duidelijk nog niet het eindpunt van 
zijn ontwikkeling heeft bereikt, heeft deze thesis daarmee twee zinvolle bijdragen 
geleverd, die toelaten betere EELS-spectra te berekenen, en die ook daadwerkelijk 
beschikbaar zijn voor elke wetenschapper, en die tenslotte licht werpen op ons 
theoretisch inzicht in EELS. 
 
 
Noot :  De appendices van deze thesis bevatten praktische en technische informatie over 
de FEFF en WIEN2k+TELNES2 programma’s die van belang kan zijn voor gebruikers 
van deze relativistische ab initio programma’s voor EELS. 
 



 13

 
 

3.  General introduction 
 
 

3.a. Content of this dissertation 
 
In the previous chapter, I wrote that the theme of this dissertation is the improvement of 
calculations of electron energy loss spectroscopy (EELS).  EELS is the study of material 
properties through measurement of its energy absorption from an electron beam.  To 
solve all of the current challenges would be too ambitious for a one-man project, but I 
believe that the work presented in this thesis does make significant advances in the 
calculation of EELS. 
 
I have focused primarily on improving the methodology of ab initio EELS, leading to 
higher quality of calculations.  I have worked with relatively straightforward materials – 
say, graphite C, h-GaN, etc – as my focus is on methodology itself, rather than on 
specific material applications.  I have paid less attention to building the bridge with 
experiment (and achieving fully quantitative EELS) by making our idealized “model 
systems” more realistic.  Additionally, my dissertation focuses on so-called “core loss” 
spectra, which involve excitations of core electrons of the sample. 
 
This paragraph provides a very concise summary of what follows. 
 
Chapter 3. 
The first major problem I’ve addressed concerns the fundamental theory of EELS.  Until 
very recently, it was commonplace to describe the interaction of the microscope’s 
electron beam and the sample classically (i.e., non-relativistically).  Suspicion starts to 
grow as soon as one realizes that beam energies of 300 keV (corresponding to 

0.77v cβ = = ) are commonly used.  Ungrounded claims were sometimes made that up 
to such energies it is sufficient to make a few semi-relativistic changes to the theory, such 
as using a relativistic electron mass and wave vector.  However, it has now been 
established that this is not true.  Relativistic theory is needed to describe the scattering of 
the beam on the sample.  The very core of EELS theory and calculations were, until very 
recently, fundamentally flawed. 
I address this problem by developing a relativistic formalism, based on work by 
Schattschneider et al.5 , to describe EELS.  The relativistic theory gives significant 
corrections over the non-relativistic theory when applied to anisotropic samples.  I have 
implemented this formalism into two important and complementary EELS codes, the real 
space multiple scattering program FEFF, and the density functional program WIEN2k.  
Both the small-q-approximated formalism of Schattschneider et al.5 and a formalism 
without such approximations are explored. 
I find that the “magic angle paradox” (see chapter 4.f), the phenomenon that drew 
people’s attention to this basic problem in the first place, is solved quite well in both 
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approaches (as already shown for the small-q theory by Schattschneider et al.).  I show an 
application to the graphite C K edge.  The “full” formalism that I develop here gives 
modest but noticeable (~10%) corrections over the small-q formalism of Schattschneider 
et al5. 
 
Chapter 4. 
The second problem that I have worked on, is of a more practical nature.  It addresses the 
problems commonly encountered when using a supercell to calculate a core hole 
spectrum of a crystal within the final state rule.  (These concepts will be explained 
below.) 
It is quite obvious that the excitation of an electron of the sample from its core state into 
an unoccupied conduction state involves two particles : this excited electron, and the hole 
it leaves in the core state.  In principle, the resulting core-hole interaction needs to be 
accounted for in a many-body theory.  In practice, however, such theories prove much 
harder to solve computationally than corresponding one-particle approximations.  
Although progress is certainly being made on solving the many-body problem including 
core-hole interaction, it is very common to calculate EELS-spectra using the “final state 
rule”.  This means that one places an excited atom in a host lattice of atoms in their 
ground state, calculates its electronic structure within an independent particle framework, 
and then calculates the EELS-spectrum.  If the sample is a crystal, then one typically 
wants to do this calculation in reciprocal space, using a unit cell to describe the basic 
building block of the material.  Supercells will then be necessary to accommodate the 
excited atom, in the same way that they are necessary for impurity calculations.  Setting 
up these supercells, calculating their electronic structure, and converging the size of the 
supercell is sometimes easy, but is sometimes a tedious and cumbersome process 
requiring significant computational resources.  Common challenges of the core hole 
calculations are discussed and illustrated with literature examples. 
In this work, I present a workaround where the electronic structure of the unperturbed 
crystal is first calculated in reciprocal space using a formulation based on impurity KKR 
theory.  In a second step, the excited atom (or “core hole atom”) is added in real space, 
avoiding the need to design a supercell and the danger of introducing artifacts.  I have 
implemented this approach in the real space multiple scattering program FEFF 
(introduced in Sec. 3.d).  Thanks to these improvements, FEFF is now able to give better 
results for the periodic systems that were not well described by a real space cluster.  
Additionally, we now have an approach to calculate core hole EELS without the need for 
a supercell.  We also discuss the equivalence of long range and short range formulations 
of multiple scattering theory6, which is the formal justification for using a real space 
description for periodic systems.  As applications, we look at GaN, graphite, Si, and 
diamond. 
 
Appendices. 
While this dissertation presents some new ideas and theoretical content, no doubt its most 
tangible legacy are the programs I’ve developed.  I’ve developed new ELNES programs 
for both the DFT code WIEN2k7 and the Green’s function code FEFF88.  Both are 
popular tools for ab initio calculation of ELNES9,10. 
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The appendices gather technical information about these new programs.  While these 
descriptions have no direct scientific value, they are included here for reference for users 
of these programs.  Both the software structure and the usage of the programs are 
discussed. 
 
 
The current chapter. 
Before I move on to discuss my work, some concepts need introduction.  In the following 
sections of this introductory chapter, I will describe electron energy loss spectroscopy, as 
well as the two formalisms underlying the two computational approaches featured in this 
dissertation : density functional theory, and Green’s function theory. 
 
 
 

3.b. Electron energy loss spectroscopy in the transmission 
electron microscope 

 
 

3.b.1. EELS as a key to the electronic structure 
 
Electron Energy Loss Spectroscopy (EELS) is, essentially, the interaction of a beam of 
electrons with a sample.  It is a spectroscopic technique used in materials science to 
obtain structural, chemical and electronic information about a sample.  EELS has been 
developed into a successful and reasonably well understood technique, and many good 
reference texts are now available to introduce the novice to EELS and give an overview 
of applications and limitations.11,12,13,14,15,16  Thanks to this availability of comprehensive 
resources, I feel justified in keeping this introduction concise, and referring the reader to 
one of the sources referenced above for a more exhaustive discussion of EELS.  I will 
somewhat neglect, in favor of theory,  the experimental part of the technique, in 
particular, as it is neither my area of expertise, nor the theme of this dissertation. 
 
 
EELS is essentially the interaction of a beam of electrons with matter.  The first EELS 
experiments were reflection experiments, in which a beam of electrons scatters off the 
surface of a sample.15,17,18  Such experiments probe the electronic properties of the 
surface.  In this thesis, we describe the more conventional transmission EELS, in which 
the electron beam passes through the sample and its energy loss is measured.  
Transmission EELS probes the bulk properties of the sample (although one must note 
that samples tend to be so thin that the bulk character and the surface sensitivity of the 
experiment may be questionable). 
Standalone, purpose built EELS spectrometers exist15, but most commonly, transmission 
EELS experiments are done in a transmission electron microscope (TEM). 
This dissertation deals exclusively with EELS done in the TEM. 
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Some obvious advantages of using a TEM is, first of all, the ability to use very fine 
probes.  Probes with a diameter of the order of ~ 1 Angstrom (Å) can be focused on the 
sample, making the experiment very local, and therefore providing information on an 
atomic scale.  The ability to use electromagnetic lenses to focus the electron beam, and, 
secondly, the strong Coulomb interaction between beam and sample which yields 
workable signal intensity even with very low beam currents, are crucial in making such 
incredible spatial resolution and sensitivity feasible.  Although it would clearly be an 
exaggeration to say that EELS routinely allows to get information on the atomic scale, 
some experiments look very impressive indeed, e.g. Ref.19, where a signal was collected 
from single Gd atoms inside fullerenes encapsulated within single wall carbon nanotubes. 
 
Let us have a closer look at what kind of information the EELS experiment gives. 
The electrons entering the sample have been accelerated to very high energies (typically 
of the order 105 eV).  Samples are typically less than 100nm thick, sometimes as thin as 
20 nm.  This is of the order of the mean free path (MFP) for plasmon excitations 
(typically ~ 100 nm). 
 
Because the sample is so thin, and the beam electrons travel at such high velocity (e.g., a 
beam energy of 300 keV corresponds to v = 0.8 c ), most of the beam electrons exit the 
sample without being scattered at all.  Other electrons are scattered elastically, changing 
their direction but not their energy.  Still other electrons scatter inelastically, losing 
energy to the sample and slightly changing direction.  While the incoming beam was (in 
an idealized case) uniform in energy and direction, the outgoing beam’s intensity is 
spread over a range of energies and scattering angles.  While traditional TEM uses only 
the elastically scattered electrons, the EELS spectroscopist measures the distribution of 
inelastically scattered electrons, either as a function of energy loss and integrated over 
scattering angle, or as a function both of energy loss and of scattering angle.  In practice, 
this is done by collecting the outgoing beam over a range of scattering angles, and using a 
magnetic prism to create energy dispersion. 
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Figure 3-1  Cartoon version of a typical EELS spectrum. 

 
Before we continue, it’s worth noting that secondary particles partake in the experiment.  
The energy absorbed by the sample can lead to the emission of a photon (X-ray), or an 
Auger electron.  These secondary signals can also be studied and give information on the 
sample, but this is not part of EELS.  Figure 3-2 summarizes all processes that happen in 
the sample during an EELS experiment. 
 
Figure 3-1 schematically shows an EELS spectrum.  The largest signal occurs at energy 
loss zero : the zero loss peak (ZLP) contains all electrons that traversed the sample 
without losing any energy.  The width of the ZLP is a good indicator of the energy 
resolution of the recorded spectrum, although this resolution does vary with energy loss.  
The fact that the ZLP has nonzero width is due to various broadening processes, but for a 
well operated microscope, it is mainly due to the imperfect monochromaticity of the 
electron source of the microscope.  Modern instruments use cold field emission guns 
(FEG), which have energy widths of about 0.3 eV, or, more often, a Schottky FEG, with 
a resolution of about 0.6 eV.  Microscopes equipped with a monochromator perform even 
better, obtaining energy resolution below 0.1 eV.20 
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Figure 3-2 Processes occurring in the sample during an EELS experiment. 

 
These numbers are of paramount importance.  Modern 0.1 eV resolution microscopes 
allow scientists to extract much more information about the electronic structure of the 
sample than older microscopes with an energy resolution of 1-2 eV.  We give an example 
for C70 C K edges (Nicholls3) in Figure 3-3. 
 
 
 
 
 

 
Figure 3-3 C K edge of C70 fullerene recorded 
on a JEOL 2010F (a) and the monochromated 
Delft Technai (b).3 

 
 

 
Figure 3-4 C K edge of C70 (a) and C60 (b) 
obtained on the monochromated Delft Tecnai.3 

 
 
 
The upper spectrum was recorded on a JEOL 2010F (using a thermally assisted field 
emitter) ; the lower on the Delft monochromated FEI Tecnai, both operating at 120 kV.  
The difference in energy resolution is a factor of 10.  Figure 3-4 shows the same C K 
edge, recorded on the Tecnai, of a C70 molecule (upper) and a C60 molecule (lower).  
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Clearly, in order to distinguish between the two fullerene molecules, the superior energy 
resolution is needed. 
 
It is exciting to see that, with the development of modern high resolution microscopes, 
experimental EELS has in recent years reached the quality necessary for high precision 
measurements and true quantitative EELS. 
 
 
Let us return to the description of the EELS spectrum (Figure 3-1).  Apart from the ZLP, 
the spectrum is traditionally divided in two parts : the low loss region, and the core loss 
region.  The separation between the two regions is fairly arbitrary and is typically taken 
to be at 50-100 eV energy loss. 
 
The most intense feature in the low loss region, typically an order of magnitude less 
intense than the ZLP, is the plasmon peak.  This is usually a fairly broad peak, situated at 
5-50 eV energy loss, which corresponds to a collective excitation of electrons in the 
crystal by the beam.  Intraband transitions can sometimes also be seen ; these are 
excitations of valence electrons into the conduction band.  They are often superposed on 
the plasmon peak or the ZLP.  If the sample is a semiconductor, then one can in principle 
measure the band gap from the low loss spectrum, as the onset of the EELS spectrum 
should be at the band gap energy.  However, this information can be difficult to extract 
due to the ZLP. 
 
The core loss region is characterized by atomic ionization, in which electrons are ejected 
from inner, or core, shells (e.g., K, L, M) of atoms in the specimen.  This process requires 
that the core electron receives an energy greater than or equal to the critical excitation 
energy, Ec, which is a function of the specific atom and electron shell and is therefore 
uniquely defined.  Characteristic signals termed “ionization edges” appear in the 
spectrum at energy losses corresponding to Ec, thus identifying the presence of specific 
elements in the spectrum.  The mere presence of ionization edges at given energy loss in 
the spectrum therefore allows fingerprinting – qualitative identification of the chemical 
content of the sample.  Quantification, i.e., analyzing the chemical composition of the 
sample is also possible, as the intensity of a given edge in the spectrum is proportional to 
the amount of the element present in the sample. 
Edges are named by the corresponding element and shell, e.g., C K for the excitation of 
the carbon 1s shell.  An overview of naming conventions is given in Figure 3-5. 
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Figure 3-5   Nomenclature of  EELS ionization edges.15 

 
It’s important to notice that the ionization edges are several orders of magnitude smaller 
than the ZLP, and are superimposed on a background consisting of the tails of the ZLP 
and previous inelastic peaks.  The relative weakness of the core loss signal is one of the 
main challenges in EELS measurements and analysis. 
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Figure 3-6  Background removal and plural scattering deconvolution of a MnO EELS spectrum.21  Total 
measured spectrum (black), 2 fits of the background (green), 2 corresponding background removed spectra 
(red and orange line), integrated cross section (red area under red curve). 

In order to analyze the core loss EELS spectrum, it is customary to remove the 
background signal.  This is usually done by fitting a smooth curve in the pre-edge 
region15, and removing it from the edge region by extrapolation, as can be seen in Figure 
3-6 (green lines).21  As indicated in the figure, this technique usually introduces some 
uncertainties or artifacts. 
Additionally, nothing keeps the inelastically scattered electron beam electrons from 
scattering again.  The shape of the ionization edge will be complicated by signals from 
electrons that scattered inelastically off the core shell, and then underwent another energy 
loss event (typically, a plasmon excitation or other low loss excitation.  It is very unlikely 
that an electron causes two core loss events.).  This effect is called “plural scattering” and 
becomes more pronounced as the sample thickness increases.  Plural scattering effects 
can be removed by Fourier deconvolution of the low loss spectrum 22,23, but as this 
numerical procedure of course introduces more uncertainty and artifacts, it is best to keep 
plural scattering to a minimum by working with thin samples, i.e., samples thinner than 
the mean free path of the plasmon excitation.  An example is given in Figure 3-6 (red 
lines).  The red area inscribed by the final curves is the measured cross section of the 
ionization edge, and can be used to determine the chemical composition of the sample, by 
comparing the measured cross-section to a known reference (measured or calculated).  
Usually, relative compositions are measured, as this eliminates many hard to quantify 
parameters (e.g., sample thickness) from the equations. 
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Model-based quantification procedures24,25,26 have been developed to address some of the 
problems associated with the somewhat ad hoc background and plural scattering removal 
described above. 
 
In the rest of this dissertation, we focus on the ionization edges in the core loss spectrum.  
We also work with the background removed, plural scattering removed spectra, such as 
those shown in Figure 3-3 - Figure 3-6. 
 
The ionization edges have intensity fluctuations above the edge onset.  This is called the 
fine structure, and it is sensitive to the details of the local atomic environment such as 
coordination, valence, and the type of bonding.  Measurement of such fine structure, and 
understanding how it is related to the electronic structure and ultimately to materials 
properties, can provide solutions to some otherwise unsolvable materials problems, 
particularly those where changes in bonding occur over small length scales. 
The fine structure is again divided in two regions (Figure 3-7), called Energy Loss Near 
Edge Structure (ELNES) and EXtended Energy Loss Fine Structure (EXELFS).  
Typically, the first 30-50 eV above threshold is considered ELNES, and any discernible 
structure above that (50-500 eV above threshold) is considered EXELFS, but this 
distinction is fairly arbitrary.  It can be motivated by the different interpretations of these 
regions.  ELNES is typically seen as a signature of the local electronic structure of the 
probed atom.  It is interpreted in terms of the local symmetry-projected density of states 
(DOS), giving information about bonding, configuration, charge transfer, valence, etc.  
EXELFS, on the other hand, is usually understood in terms of multiple scattering (MS) 
theory, where the excited electron is seen as a wave that propagates outward from the 
excited atom, interfering with waves backscattered from neighboring atoms, leading to 
oscillations in the fine structure.  By extracting these oscillations from the fine structure, 
one can retrieve the Fourier transform of a radial distribution function, leading to 
information about interatomic distances and coordination numbers.27,28,29  The advantage 
over working with a diffraction pattern (which would be easier to measure accurately) is 
that the EXELFS information is element specific. 
Both interpretations are equally valid for the whole ionization edge; the distinction is a 
matter of convenience only.  As the cross section decreases rapidly with increasing 
energy loss, but the fine structure becomes easier to understand at higher energy losses, 
ELNES is easier to measure but harder to analyze, while EXELFS is harder to measure 
but easier to analyze. 
 
While EXAFS, the X-ray equivalent of EXELFS, is a very popular technique, EXELFS 
studies are quite rare.  Most EELS experiments focus either on the low loss region, or on 
the ELNES of ionization edges in the core loss region.  This dissertation focuses on 
ELNES. 
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Figure 3-7 Experimental Zn K edge of wurtzite ZnO measured by XAS.  Near edge and extended regions 
of the ionization edge are indicated as XANES and EXAFS. 30 

 
In order to gain further understanding of EELS, let us turn to a (non-relativistic) quantum 
mechanical description of the absorption process.  We refer to literature for more 
background to our intuitive description.13,31,18  We calculate the double differential 
scattering cross section (DDSCS), which is the probability of a beam electron being 
scattered into a direction described by a solid angle Ω, and transferring energy E and 
impulse q to the sample.  At the same time, the sample is excited and transitions from an 
initial state into a final state.  Using Fermi’s golden rule (derived from time dependent 
perturbation theory) to calculate the probability of such a transition, the DDSCS is given 
by31 
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where V is the interaction potential between probe and sample, I and F are initial and 
final states of the sample of energy EI and EF, kI and kF are initial and final states of the 
probe, E is the energy loss, and ζ is a prefactor. 
Although it is possible to measure the DDSCS (3.2.1), it is more common to measure a 
differential cross section 
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which is (3.2.1) integrated over a range of impulse transfers selected by the microscope 
settings, here represented by the parameters α and β.  The parameter α is the convergence 
semi-angle describing the width of the beam.  The parameter β is the collection semi-
angle describing the opening of the EELS spectrometer (Figure 3-8).  (For simplicity, we 
assume here that the beam is incoherent and that the detector is placed on the optical 
axis.)  The EELS spectrum depends significantly on the impulse transfer 32, and hence it 
is important to account for α and β when interpreting experimental results.  Typical 
values are of the order mrad. 



 24

 

 
Figure 3-8  Convergence (α) and collection (β) semi-angle in an EELS experiment.15 

 
In (3.2.1), the initial and final states of the probe are usually taken to be plane waves of 
wave vector kI resp. kF.  (This implies that diffraction or channeling effects due to 
periodicity of crystals are neglected.  To include these effects, a more general treatment 
using the Mixed Dynamic Form Factor would be required.33)  Furthermore, the 
interaction potential is the Coulomb potential.  Exchange effects between probe and 
sample can be neglected because of the very high kinetic energy of the probe electron (it 
is extremely unlikely that the sample would emit an electron with kinetic energy of the 
order 105 eV).  Coulomb interaction with the nucleus does not contribute for inelastic 
scattering (ignoring phonon excitations), and the nuclear positions can safely be assumed 
fixed during the excitation (this is the Born Oppenheimer approximation).  The sample 
states I and F are then states of the electrons in the sample.  Eq. (3.2.1) can now be 
updated31,18,13 to 
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where the constant ζ has been specified explicitly, and there are N sample electrons with 
position vector rj interacting with the beam electron at r. 
 
At this point, the sample states I and F in (3.2.3) are still N-electron states (N being the 
number of electrons in the sample).  For practical purposes (e.g., calculations) these are 
often assumed to be products of one-electron states, of which only one changes during 
the scattering event.  In that case, the equation can be simplified such that the states I and 
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F are now the one-electron orbitals occupied by the excited sample electron before resp. 
after the scattering.  See Fuggle18 or Nelhiebel31 for details.  I is then a one-electron core 
orbital, and F a one-electron unoccupied state. 
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Eq. (3.2.4) can now be recast in terms of the unoccupied density of states (DOS) χ(E). 
With some approximation34, we can write 
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which is a sum of transitions to final states of lF – character (s, p, d, …), each given by 
the density χlF(E) of available states of lF – character multiplied by a matrix element 
MlF(q,E) which is a smooth and slowly decaying function of energy. 
This is the expression for the DDSCS most often encountered in literature, although it is 
not strictly valid in all cases.  For low symmetry materials, so-called cross-terms can 
contribute to the cross section (see Nelhiebel34). 
 
The impulse transfer q in EELS tends to be small compared to the beam momentum kI, 
kF as the scattering is strongly forward oriented and the beam energy is much higher than 
the energy transfer.  Additionally, the matrix element in (3.2.4) is confined to the region 
where the initial state I is nonzero.  Typically, this is a deeply bound core state that 
extends only over distances comparable to the Bohr radius a0 , but due to delocalization, 
the core state can be larger (~ nm).  The exponential interaction operator can therefore be 
approximated by the leading terms of its Taylor expansion, 
 ( )21 ... 1ie i i i= + + + ≈ +q.r q.r q.r q.r  (3.2.6) 
After dropping the first term due to orthogonality of initial and final states, the leading 
term is the linear term.  Retaining only this term is called the dipole approximation.  Its 
effect is that only final states for which the orbital momentum quantum number obeys 
 1F Il l= ±  (3.2.7) 
can contribute to the cross-section (3.2.4).  This reduces (3.2.5) to one term (initial state 
is a s-state) or two terms (other initial states). 
Violations of the dipole transition rule have been observed15,35,30 but are rare in ELNES. 
 
 
We have now established a useful interpretation of ELNES : apart from a smooth matrix 
element Ml(E), it is a fingerprint of the local symmetry-selected unoccupied density of 
states.  Local, because there needs to be overlap between initial and final states.  
Symmetry-selected, because of the dipole selection rule. 
As an example, we show the Si L23-edge in Figure 3-9. 
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Figure 3-9 Si L23-edge (initial state is the 2p-orbital).  Experimental and theoretical spectrum compared 
with the local s-DOS and d-DOS.  The spectrum can be seen to be the sum of a s-contribution and a d-
contribution, in agreement with the dipole selection rule.  Taken from Weng et al.36 

 
Given the DOS interpretation, it is now easy to understand that the same element in 
different materials will have a different EELS spectrum.  An example is given for the C 
K edge in Figure 3-10.  Of particular interest are the differences in fine structure, the 
appearance of a π* peak in the materials that have sp2 bonding but not in the materials 
that only have sp3 bonding, and small variations in the edge onset (corresponding to small 
variations in the binding energy of the 1s state) known as chemical shifts.  All these can 
be explained as differences in the local electronic structure. 
 
 
A final warning needs to be given about the interpretation in terms of one-electron 
orbitals and DOS.  The excitation of the core electron is a dynamic process, meaning that, 
as the electron is excited from one state to another, the “core hole” it leaves behind in the 
core state alters the local potential, and also alters the final state the electron transitions 
into.  This can be understood in terms of timescales.  A 200 keV electron has velocity v = 
2.7 108 m/s.  Keast et al.11 estimate that, given a diameter of ca. 0.01 nm for the O K 
shell, the value of the excitation timescale is only 10-19 to 10-20 s.  (This argument ignores 
delocalization of the core shell and the possibility of an excitation occurring while the 
fast electron is some distance away from the atom, which is a less than compelling 
assumption.  Arguably, the excitation timescale could be significantly (~102) larger.)  In 
comparison, the lifetime of the resultant excited state is typically much longer, owing to 
the slow core hole decay process (typically 10-14 to 10-15 s).  This relatively slow decay 



 27

rate implies that the excited state should be influenced by the presence of the core hole.  
Generally, the core hole makes the final state “see” a larger than normal positive nuclear 
charge.  The resulting attractive core hole potential tends to bind outer electronic states 
more strongly, making them contract spatially and lowering their binding energy, i.e., 
pulling them inward (in space) and downward (in energy).  The core hole tends to shift 
transition probability down towards the edge threshold.  If states get pulled below the 
onset, one speaks of core excitons. 
 

 
Figure 3-10  C K edge of carbon in different structures : benzene, graphite, cyclohexane, and diamond.  
The differences in local electronic structure and bonding are reflected in the EELS spectra, which show 
chemical shifts and different fine structure.  Taken from Stohr.37 

 
 
The core hole may be shielded or screened by other electrons in the solid (e.g., mobile 
valence electrons) which will lessen its influence on more outlying electron states.  
Screening is expected to be stronger in metals, where such mobile valence electrons are 
more easily available, and weaker in insulators, where the core hole effect thus ought to 
be stronger.  This generally appears to be the case.11,38 
 
A (theoretical) illustration of the core hole effect is given in Figure 3-11. 
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Figure 3-11  Mg K edge of MgO.  Experiment is shown in light blue (top), ground-state calculation 
without core hole is shown for MgO (red, bottom).  It fails to reproduce the experiment.  A core hole 
calculation (pink, second curve from the top) matches the experimental spectrum fairly well.39  The Z+1 
approximation is also shown (dark blue).  The green spectrum is an unconverged core hole spectrum. 

 

3.b.2. EELS compared to other techniques. 
 
Of course EELS isn’t the only available technique for the study of the electronic structure 
of materials.  First of all, we point out the difference between absorption techniques, 
which probe unoccupied electron states of the sample, and emission techniques, which 
probe occupied electron states. 
 
Secondly, one can choose which primary particle to work with.  In EELS, an electron 
probe is used to interact with the sample.  Other possibilities are x-rays (photons) and 
neutrons.  Electrons have the advantage that electromagnetic lenses make manipulation of 
the beam easy, and in particular it is possible to create Å-sized probes.  At the same time, 
the strong Coulomb electron-electron interaction produces sufficient signal even at the 
low currents characteristic of these small probes.  (Drawbacks of the strong interaction is 
that samples need to be very thin in order to have sufficient transparency, and that 
samples can easily suffer from beam damage.3)   
Currently, only electrons can probe matter on the nanoscale (X-ray experiments typically 
have resolutions of up to ~ μm, although this can nowadays be improved to ~ 10 nm 
using zone plates.  Neutron experiments have far worse spatial resolution.).  This makes 
EELS a method of choice for studies of materials on the atomic scale. 

Experiment 
Core hole with supercell 
Z+1 calculation without supercell 
Core hole without supercell 
No core hole 
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The energy resolution of EELS used to be much worse than that of X-ray experiments (~ 
1 eV for EELS, ~ 10 meV for X-rays), making X-rays the preferred primary particle for 
studies of bulk materials, but recent Schottky FEG + monochromator microscopes are 
getting energy resolution below ~ 100 meV, and it seems the gap is being closed.3 
 
Third, instead of measuring the transmitted electron beam (EELS), one can also measure 
secondary particles such as X-rays (EDX) or Auger electrons (AES).  These techniques 
yield comparable information to EELS, although not with the same spatial resolution and 
sensitivity. 
 
Having established that EELS is a preferred technique for study of the electronic 
structure on the atomic scale, we refer to Tanaka30, Keast11, Egerton15 and references 
therein for many examples of EELS experiments on nanostructures, including interfaces, 
defects, dislocations, nanoparticles, … 
 
 
We now discuss the relation between XAS and EELS. 
The X-ray equivalent of EELS is called X-ray Absorption Spectroscopy (XAS).  Here, a 
beam of photons is used to excite core electrons into an unoccupied electron state, and 
similar spectra and ionization edges are measured as in EELS.  The equivalent of ELNES 
is called X-ray Absorption Near Edge Structure (XANES), and the equivalent of 
EXELFS is Extended X-ray Absorption Fine Structure (EXAFS). 
Formally, EELS and XAS are very similar.   

 
Figure 3-12  Schematic representation of  EELS (left) and XAS (right). 

 
The processes are represented schematically in Figure 3-12.  The cross-sections are given 
by13,40  
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However, making the dipole approximation (3.2.6), (3.2.8) and (3.2.9) become equivalent 
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with the polarization vector ε of the photon beam in XAS being formally equivalent to 
the impulse transfer vector q in EELS.  The omitted prefactors are different, leading to a 
faster decay of EELS with increasing energy loss. 
 
 

3.b.3. Ab initio calculation of EELS. 
 
As has been pointed out before, it’s often useful to have ab initio calculations of EELS in 
order to help analyze experimental results.  Straightforward examples include 

• Calculation of an EELS cross-section used for quantification of the chemical 
composition of a sample 

• Validation and refinement of a structural model by comparing calculated EELS to 
experimental results 

• Improving understanding of an experimental EELS spectrum by using 
calculations to correlate peaks in the spectrum with features of the density of 
states or band structure, ... of the material 

 
One needs to solve eq. (3.2.1) or an equivalent (see, e.g., the multiple scattering 
formulation in Sec. 3.d).  Classifications of EELS calculations go back quite a ways41,42.  
The different types of calculations essentially come down to different strategies used to 
calculated the electronic structure of excited states.  Here, we distinguish three types of 
EELS calculations. 
 
The first is the Multiple Scattering (MS) theory.43,44,45  In this approach, the excited 
electron in its final state is considered as a wave scattering off the atoms in the sample.  
This scattering process is described using Green’s functions.  It can be formulated both in 
real space (RSMS), which makes the method applicable to arbitrary, nonperiodic systems 
; or in reciprocal space, e.g. Kohn-Korringa-Rostoker theory (KKR).46,47 
 
The second approach are band structure calculations, which are, as the name implies, 
normally formulated in reciprocal space using infinite, periodic lattices.  Eigenstates are 
solved for in reciprocal space, often using some basis set, such as plane waves (often 
coupled to the use of pseudopotentials48]; or (Linearized) Augmented Plane Waves 
((L)APW),49 which use atomic spheres; or orthogonalized linear combinations of atomic 
orbitals (OLCAO).30 
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The third approach is the atomic multiplet theory.  In this very simple but succesful 
approach, all multiplets are calculated and added in a simple approach that is mostly 
atomic, in which the solid state effects are summarized by the space group and some 
crystal field parameters.50  Recently, multiplets have also been combined with band 
structure calculations.30 
 
A second divider (at least for the first two categories) is whether one works in an 
independent particle picture, or in a many-body picture.  One can use a one-particle 
Green’s function (e.g., the formalism developed below) or a two-particle Green’s 
function (e.g., the Bethe-Salpeter theory (BSE))51,52 which can describe electron-hole 
interaction.  One can use DFT (e.g., the section about DFT below), or time dependent 
density functional theory (TDDFT)53. 
It has been shown54 that the independent particle (final state rule with core hole) 
calculations are incapable of describing certain many-body effects, such as deviations of 
the L23 branching ratio (the ratio of intensities of the L2:L3 white lines) from the statistical 
ratio of 1:2 in transition metals (Figure 3-13).  It is not yet clear what is needed precisely 
to address this and other issues.  E.g., Tanaka et al.30 reports good results for white line 
ratios using one-electron band structure calculations combined with multiplets.  Such 
calculations are more tractable than full many-body solutions such as GW + BSE. 
 

 
Figure 3-13 L23 edges for the transition metals.  The sharp lines just above the edge onset are due to 
transitions to the unoccupied part of the  narrow d-band.  The intensity of these lines decreases as the 
atomic number increases across the spectrum and the d-band fills.  The L23 white line ratio (see text) is 
generally different from the statistical 1:2 ratio and varies widely across the series.55 
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The work in this dissertation is done either with multiple scattering theory (as 
implemented in the FEFF8 program8), or with band structure methods (as implemented in 
the WIEN2k program7).  Each has its particular advantages.  E.g., MS/FEFF8 is 
applicable to nonperiodic systems, is fast, can be used for large energy regions of 100’s 
of eV above the edge threshold, easily takes temperature effects into account using 
Debye-Waller factors, and has some useful features for describing excited states, such as 
the self energy and TDDFT.  On the downside, it uses spherical muffin tin potentials, and 
there can be finite cluster effects when describing solids.  BS/WIEN2k, on the other 
hand, is slower and only applicable to periodic systems, and only useful in the near edge 
region, but it is Full Potential (FP), describes the electronic structure more accurately, and 
can be used for structural optimization. 
 
 
 
 

3.c. Density functional theory 
 

3.c.1.The Kohn-Sham equations 
Whereas many approaches (e.g., Hartree-Fock)  solve the Schrödinger equation in terms 
of wave functions, density functional theory (DFT) is formulated in terms of the electron 
charge density.  This has obvious advantages, such as limiting the number of dimensions 
to 3, compared to 3N for a wave function of a N-particle system.  Optimistically, one 
might say that density functional theory limits itself to useful information (the charge 
density), as, in the end, we are not interested in wave functions but in physical 
observables.  According to DFT, these can be retrieved from the charge density. 
 
DFT is based on two theorems known as the Hohenberg-Kohn theorems.  The first 
theorem states that there is a one-to-one correspondence between the ground state 
electron density n(r) of a many-electron system and the external potential acting on it.56,57  
This is equivalent to the external potential being expressed as a functional of the electron 
density.  The ground state wave function, ψ(r1, ..., rN), is a functional of the external 
potential and, therefore, also of the density. 
The energy of a system is given by 
 [ ] [ ]ˆ( ) ( )E n r H n rψ ψ=  (3.3.1) 

where H is the Hamiltonian for the system, and so the energy is also a functional of the 
density. The Hamiltonian can be split into contributions from the kinetic energy (T), the 
interaction energy for the electron-electron interactions (U) and the external potential (V), 
which includes the electron-ion interactions, so that the energy becomes 
 [ ] [ ] [ ]ˆ ˆ ˆ( ) ( ) ( )E n r n r T U V n rψ ψ= + +  (3.3.2) 

The second of the Hohenberg-Kohn theorems states that for E[n(r)] to be a minimum, the 
ground state wave function and therefore the ground state density must be used in 
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equation (3.3.2). This means that if E[n(r)] is minimized with respect to the density, the 
ground state density and energy have been obtained. 
 
To make this theory practical, the Kohn-Sham approach is followed.58  The essence of 
this approach is to map the interacting system onto a system of non-interacting electrons 
that has the same total energy and ground-state electron density.  Solutions for this non-
interacting system can be obtained numerically.  n(r) is expanded as a sum of 
independent orthonormal orbital contributions 

 *
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n r r rφ φ
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These wave functions do not have a physical meaning. The Hamiltonian is then written as 
a sum of several contributions 
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where the first term is the operator corresponding to the kinetic energy of a system of 
non-interacting electrons, Uion is the nuclear potential, UCoulomb is the potential 
corresponding to the Hartree energy (the interaction energy between a single electron and 
the charge density made up from all the other electrons) and Uxc(r) is known as the 
exchange-correlation potential. It is formally defined as 

 [ ]( )
( )

( )
xc

xc

E n r
U r

n r
δ

δ
=  (3.3.5) 

where Exc[n(r)] is the exchange-correlation energy. This energy is the sum of (i) the 
difference between the real kinetic energy and that of a system of non-interacting 
electrons and (ii) the difference between the real interaction energy between the electrons 
and the Hartree energy. A series of single particle equations, known as the Kohn-Sham 
equations, can now be obtained using the wave functions used to construct the density  
 ˆ ( ) ( )i i iH r rφ ε φ=  (3.3.6) 
The problem has now been reduced to a series of single particle Schrödinger equations 
which can be solved and used to construct the ground state electron density and to obtain 
the ground state energy. The terms in the Hamiltonian are dependent on the density, 
which is in turn dependent on the wave functions that are being sought. This means that a 
self-consistent cycle must be used to converge the wave functions. 
 
 
The only difficulty remaining is that the exact form of the exchange correlation potential 
is unknown. 
Exchange and correlation are defined separately : 
 ( ) ( ) ( )XC X CE n E n E n= +  (3.3.7) 
Exchange energy is defined as the difference of the expectation value of the interaction 
potential U for the Kohn Sham wave function, and the Hartree energy : 
 [ ] [ ]ˆ ˆ( ) ( )X HE n U n U nρ ψ ψ= −  (3.3.8) 

If the wave function is a simple Slater determinant, the exchange energy is given by the 
well known expression : 
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(Note that (3.3.9) is not the density functional itself, since the equation is expressed in 
terms of orbitals and not in terms of the density). 
The correlation energy is the remaining part.  It is always negative. 
 [ ] [ ]( ) ( ) ( ) ( ) ( ) ( )C s ee XE n T n T n V n U n E n= − + − −  (3.3.10) 
The correlation energy is the difference between interacting and non-interacting kinetic 
energy, plus the mistake introduced by evaluation EX for the Kohn-Sham wave function 
instead of the exact wave function. 
Adding correlation and exchange is advantageous because functionals often perform 
better for the sum than for the separate terms, due to cancellation of errors. 
 
The exchange correlation potential can be approximated in several ways. 
The simplest approach is to use a functional which depends only on the local density, the 
Local Density Approximation (LDA) functional.59,60 

 ( )3, ,LDA LDA
XC XCE n n d r n n nε↑ ↓ ↑ ↓=⎡ ⎤⎣ ⎦ ∫  (3.3.11) 

where ε is the LDA exchange correlation kernel.61  Essentially, the system is treated as a 
homogeneous free electron gas, making it plausible that LDA work best for fairly 
homogenous systems. 
 
The LDA is beyond any doubt the most often used functional, and although its failures 
are many, it has been quite successful, far more so than one would suspect, given its 
crudeness.  Roughly speaking, one can make the following statements.61  For atoms and 
molecules, the exchange energy is underestimated by 10%, and the correlation energy is 
overestimated by a factor of 2 – 3, leading to a total exchange correlation energy 
underestimated by 7%.  LDA gives fairly good charge densities, but less good exchange-
correlation potentials, which can lead to ionization potentials being unreliable.  The 
results are better for solids, where the correct band structure is found.  However, the band 
gap is underestimated by up to a factor of two.  Sometimes, semiconductors are falsely 
predicted to be metals.    Atomization energies and cohesive energies of solids are 
typically 1.3 eV too large, far more than what’s called “chemical accuracy”( ca. ~10-2 eV 
or ~ 1 kcal/mole compare to kT = 0.025 eV at room temperature; or the latent heat of ice, 
1.5 kcal/mole.).  Bond lengths tend to be reliable.  Lattice parameters are typically 
underestimated by a few percent. 
For strongly correlated systems, there are problems (e.g., weakly bonded H2).  LDA is 
notorious for predicting that the ground state of iron is nonmagnetic.  Magnetism 
generally isn’t LDA’s strongest side. 
Generally speaking, LDA tends to make systems more homogeneous than they really are.  
That shouldn’t come as a surprise : the underlying philosophy of LDA is homogeneity, 
after all.61 
 
The generalized gradient approximation (GGA)62 additionally takes into account the 
gradient of the charge density, making it a semi-local approach : 
 , ³ ( , , , )GGA

XCE n n d r f n n n n↑ ↓ ↓ ↑ ↓ ↑= ∇ ∇⎡ ⎤⎣ ⎦ ∫  (3.3.12) 
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Although GGA is formally superior to LDA, in practice it doesn’t always lead to better 
results.  We again make some general statements.61 
GGA’s yield better total energies than LDA (important for structure optimization).  The 
errors in exchange energies and in correlation energies are smaller than in LDA.  The 
artificial overbonding of s-states relative to p (and p relative to d, etc.) of LDA is much 
improved in GGA.  GGA also treats molecules and atoms on more equal footing.  This 
leads to better binding energies than LDA, better dissociation energies, atomization 
energies, energy barriers, etc.  GGA also gives weaker and less localized bonds than 
LDA, and as a result, GGA tends to find larger bond lengths than LDA, which has a 
tendency to overbind – but sometimes GGA overcorrects.61  Lattice parameters are 
slightly larger than in LDA and tend to be very accurate.  GGA is much better at 
predicting the correct magnetic ground state than LDA, but the magnetic moments can be 
unrealistically large. 
 
There are many newer and more advanced functionals.  To give an overview would be 
beyond the scope of this introductory chapter, as the DFT results in this dissertation were 
all calculated using a GGA exchange-correlation potential. 
 
We have remarked in the section on EELS that the core hole effect can have an important 
influence on the spectrum.  In DFT calculations, it can be accounted for in different 
ways.63 
 
• Forced-excitation or ionization method: An electron (or part of an electron) is removed 
from the core state. This electron may be put into the valence band in a forced excitation, 
or completely removed in a complete ionization. If half of the core electron is excited, the 
state is known as Slater’s transition state.63 This method is only possible for DFT codes 
which include the core electrons. 
• Z+1 method: The excited atom is treated as a defect, and substituted by the heavier 
following atom in the periodic table. 
 
Both of these methods are static methods, i.e. they do not include the response of the 
electrons to the change in potential.  Many argue that they are comparable.64  However, 
the Z+1 approximation is more crude in that it uses the same core hole potential no matter 
which shell the core hole is in.  The Z+1 approximation is not used much anymore. 
More advanced treatments are available which are based on Green’s Functions methods. 
 
 
We conclude this section by making a final remark about applying DFT results to EELS 
calculations, which involve excited states. 
 
DFT can be used to calculate the ground state electronic configuration of a system. This 
is made up of the single particle eigenvalues. It is possible to continue the eigenvalue 
spectrum above the Fermi level and obtain an “unoccupied” density of states. 
Theoretically, the eigenvalues and eigenstates obtained from DFT are only meaningful in 
describing ground state properties and so there is no formal justification for interpreting 
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the unoccupied eigenvalues as the unoccupied DOS. It has, however, been found to 
describe experimental data well, and so is often used in this way.16,41,65 
 
 
 

3.c.2.  Implementation in WIEN2k 
 
Solving the Kohn-Sham equations normally involves finding the coefficients cip needed 
to express φi(r) in terms of a given basis set φp(r) 
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= ∑  (3.3.13) 

In principle, P is infinite, but in practice a value of P is chosen to generate a basis which 
produces a function close to φi(r). The difficulty is to produce a basis set which contains 
few basis functions and is therefore computationally efficient, but describes many 
different situations well. 
WIEN2k7 uses the linearized augmented plane wave (LAPW) method49 to produce the 
basis set. This approach works by dividing the unit cell into non-overlapping atomic 
spheres (S) which are centered on the atomic sites, and an interstitial region (I). Inside the 
atomic spheres, a linear combination of radial wave functions multiplied by spherical 
harmonics is used.  Additional functions are added to linearize the basis set49 and increase 
its flexibility to describe states of different eigenenergies.  In the interstitial region a 
plane wave expansion is used.  We give an expression for the wave function 
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to give the reader a feeling of what the basis set looks like.  More details can be found on 
this method in the literature.49,66 
 
The key fact about the WIEN2k L/APW basis is that it has the flexibility to describe free-
electron-like states in the interstitial, and atomic-like states near the nuclei.  Therefore, 
WIEN2k can be “all electron”.  This means it calculates all electron states explicitly, 
including the tightly bound, atomic-like deep core states.  In pure plane wave codes, it is 
customary to represent these states by pseudopotentials and pseudo wave functions.  Of 
course, this leads to faster calculations.  On the other hand, it is a complication for EELS 
to have to reconstruct correct core wave functions.67,68 
 
WIEN2k offers several exchange-correlation potentials.  The spectra in this dissertation 
were calculated using the PBE96 GGA exchange correlation potential.69 
 
EELS spectra can be simulated in WIEN2k using the older TELNES program34, or its 
relativistic successor TELNES2, which will be described in Sec. 4.d.70  An excellent 
overview of ELNES calculations using WIEN2k + TELNES is given in Hébert.10 
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3.d. Green’s function theory 
 
 
 

3.d.1.Multiple scattering formula for the cross section 
 
The multiple scattering (MS) formalism was originally developed for x-ray scattering 
(XAS), and we will follow closely the discussion in chapter 2 of Ankudinov71, which also 
contains many more references. 
 
Using Fermi’s golden rule for the XAS transition rate, the total XAS absorption cross 
section is given by 

 ( )
2 2 2

2
,

4( ) i
tot f i

i f

e f e i E E
cm
πσ ω δ ω

ω
= − −∑ k.rp.ε =  (3.4.1) 

where ω is the frequency of the x-rays (corresponding to energy loss in EELS) with wave 
vector k and unit polarization vector ε.  p is the impulse vector.  Labels i and f stand for 
initial (occupied) and final (empty) states, with energies Ei and Ef. 
In the band structure approach, one finds initial and final eigenstates and eigenvalues (i, 
Ei and f, Ef) and then evaluates (3.4.1).  It’s possible to use a different approach of 
multiple scattering theory, which is based on Green’s function theory. 
In single electron theory, the Green’s function is defined as 
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where H is the Hamiltonian, and η is infinitesimal and positive.  The cross section can be 
rewritten in terms of the Green’s function : 

 ( ) ( )*4 ˆ( ) Imtot i i F
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= − + − +∑ =  (3.4.3) 

with the operator 
 id eε = k.rp.ε  (3.4.4) 
for XAS.  (For EELS, we use 2 id q e−= q.r .  The prefactor also needs to be chosen 
differently.)  The θ(Ε) Heavyside function cuts off poles of the Green’s function below 
the Fermi energy EF.  
The one-particle Hamiltonian is split into two parts, a free electron Hamiltonian H0 and a 
scattering potential V. 

 2
0

1
2 mt i

i

H H V V v⎛ ⎞⎛ ⎞= + = − ∇ + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑  (3.4.5) 

where Vmt is a constant shift of the zero level, and V has been written as a sum of 
scatterers (which are, of course, the atoms of the sample). 
We use the free particle Green’s function 
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 (3.4.6) 

where ρ = k r and k = (2(E-Vmt))1/2 .  The full Green’s function can be written using 
perturbation theory in V and the Dyson series expansion 
 0 0 0 0 0 0 ...i i j

i j i

G G G t G G t G t G
≠

= + + +∑ ∑  (3.4.7) 

with the t-matrix at each site linked to the scattering potential as 
 0

i i i it v v G t= +  (3.4.8) 
For spherical (muffin tin) potentials, it can be expressed in terms of phase shifts 

 sin
2

i
li i

i l
l

et
k

δ δ
= −  (3.4.9) 

For EELS or XAS spectra and (3.4.3), the Green’s function must be evaluated for r and r’ 
at the scattering site, or central site “c” (i.e., the atom that gets excited by the scattering 
event).  It helps to write the “central atom contribution” separately 
 0 0 0

c cG G G t G= +  (3.4.10) 

 0 0 0 0 0 ...c c i i j c
i c c j i c

G G G G t G G t G t G G
≠ ≠ ≠ ≠

⎡ ⎤
= + + +⎢ ⎥

⎣ ⎦
∑ ∑  (3.4.11) 

where no two consecutive scattering events take place at the same atom site.  The central 
atom Green’s function can be expressed through regular (Rl) and irregular (Nl) solutions 
of the Schrödinger equation in a potential V 
 [ ] * ˆ ˆ2 ( , ) ( , ) ( , ) ( ', ) ( ) ( ')c l l l l lm lm

l m
G k R r k N r k iR r k R r k Y r Y r< >= − +∑ ∑  (3.4.12) 

Projection onto a site and angular momentum basis 
 

,

ˆ1 , , , ( ) ( ) ( )l
l lm L

L i

L i L i L i i j kr Y r j= = =∑ r r  (3.4.13) 

transforms the equations into matrix equations.  Here we use the standard notation of 
multiple scattering theory where L ≡ l,m.  Using two-center expansions for the Green’s 
functions, e.g. 
 0 '*

0 '
, '

( , ) ( ) ( ) ( )L LL L
L L

G j G j= −∑ 0 0ρ ρ' ρ ρ ρ ρ'  (3.4.14) 

(3.4.3) becomes 
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 (3.4.15) 

where ˆ( , ) ( )l
L l lmR i R r k Y r=r , and the Green’s function matrix '

sc
LLG is defined as 

 ( ) ( ) ( )
{ }

2 1 1 1
1

0 0 1 0
' '

,...,
...

N N
N i

sc N
LL LL L L L L L L

N r r L
G G t G t G= ∑ ∑ ∑ N +1 2 1ρ ρ ρ  (3.4.16) 

which is a sum over scattering paths of N scattering events at the sites r1 through rN, via 
angular momentum states  Li . 
Remark that in the dipole limit the cross-section can also  be expressed as 
 ( ) ( ) ( ) ( )' '

, '

( ) ,tot L LL L
L L

E i i M E E M Eσ ρ ρ∑q.r r r' q.r∼ ∼  (3.4.17) 
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where ML(E) are dipole matrix elements, and ( )' '1 ImLL LLE Gρ π= −  is the one-electron 
density matrix. 
 
Only three ingredients are needed for the calculation of the cross section : the matrix 
elements of the operator d, the two center matrix elements of the free propagator (3.4.14), 
and the scattering t-matrices (3.4.9).  All of these can be obtained by solving the Dirac (or 
Schrödinger) equation for a central field potential for each scatterer in the problem. 
 
In order to be able to use a high angular momentum cutoff L in (3.4.15), it is of 
tremendous importance to use a separable representation for the free-propagator two-
center matrix elements, as introduced by Rehr and Albers.72   In order to analyze EXAFS, 
one needs to calculate the spectra up to several 100 eV above the threshold.  Often, one 
needs Green’s function matrix elements for L and L’ up to lmax=25.  Thanks to the Rehr-
Albers decomposition,73 only matrices of rank 6x6 need to be multiplied in the multiple 
scattering formula (3.4.16) instead of matrices of rank 1250x1250 (for lmax=25). 
 
High above the edge onset (EXELFS or EXAFS), the Path Expansion (PE) (3.4.16) 
usually converges well with relatively short scattering paths (i.e., not too many scattering 
events per path, and only to scatterers fairly close to the central site “c”).  However, for 
the energy region close to the edge (ELNES or XANES), (3.4.16) can give severe 
convergence problems, as very long scattering paths contribute significantly.  The so-
called “Full Multiple Scattering” (FMS) helps here.  We can rewrite (3.4.16) as a matrix 
equation 
 0 0 0 0 0 0 ...scG G G TG G TG TG= + + +  (3.4.18) 
defined as ( )0 0

', ', LL i jL i G L j G ρ ρ= −  for i≠j and 0, ', 0L i G L i =  and 

', ', k
L ik jk LL

k
L i T L j t δ δ δ= ∑  .  The geometric series (3.4.18) now gives 

 ( ) 10 01scG G T G
−

= −  (3.4.19) 
which is the FMS equation. 
 
In principle, (3.4.19) and (3.4.16) are completely equivalent.  However, whereas 
convergence in terms of the number of scattering paths limits the applicability of the path 
expansion, the FMS equation is limited by the size of the matrix that needs to be inverted 
in (3.4.19), which shouldn’t be bigger than 104 or smaller for conventional computer 
systems.  Given that one typically needs a cluster of a few hundred atoms (100-500) to 
model a solid using FMS, the angular momentum needs to be truncated at lmax = 3 or 4.  
This limits the applicability of (3.4.19) to the near edge region (ELNES, XANES), as 
higher l-values become increasingly important further above the threshold.74,38  
Fortunately, PE and FMS overlap at the beginning of the extended structure (see Figure 
3-17). 
Another difference between PE and FMS is that one can accurately incorporate Debye-
Waller factors into PE, whereas they can only approximately be accounted for in FMS.71 
 
Generalization of the formulas presented above to include spin and to work in a 
relativistic basis are straightforward.71 
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Introducing a core hole in the theory presented so far, is easy.  The core hole atom will 
have its own t-matrix, different from that of other atoms of the same element in the solid 
(the other C atoms in the diamond crystal, say).  Additionally, the finite core hole lifetime 
will add an imaginary part to the potential ( 2mt mt chV V i→ − Γ ).  All propagators decay 
exponentially, reducing contribution. 
 
Finally, one last convention needs to be introduced.  It is common practice in MS 
applications to speak of a background and fine structure.  The absorption coefficient can 
be written as 
 ( )0( ) ( ) 1 ( )E E Eμ μ χ= +  (3.4.20) 
as is immediately clear by comparison to (3.4.15).  The function μ0 is called the atomic 
background.  While it is a smooth function of energy, it does depend slightly on the 
environment of the absorbing atom, and therefore the epithet “atomic” is somewhat 
misleading.  The fine structure χ is just that : it contains all the peaks and wiggles of the 
spectrum, and most of the sensitivity of the spectrum to the local environment. 
 
 

3.d.2.Implementation in FEFF8 
 
This chapter introduces some of the concepts typical to a Multiple Scattering study, and 
provides examples to the last section.  All examples are taken from Moreno et al.9  We 
need to stress that FEFF8 as presented here refers to the version prior to the 
implementation of improvements for EELS calculation as described in the following 
chapters of this dissertation (Chapters 4.e and 5).  Here, we illustrate the FEFF8 program 
as in Ankudinov et al.8, while the new developments described later are presented in 
Jorissen et al.75  Many improvements have been introduced, such as a better approach to 
orientation sensitivity, relativistic formalism, accounting for collection and convergence 
semi-angles, etc.  All these important aspects will not be discussed in the current chapter, 
but will be treated later. 
 
 
 
 
 
 
 

3.d.2.1 The FEFF8 program 
 
FEFF8  is an ab initio and largely parameter-free implementation of the Real Space 
Multiple Scattering (RSMS) method. The code does have a few adjustable parameters, 
though. These include corrections to the Fermi-energy, experimental broadening, and the 



 41

Debye temperature in Debye-Waller factor calculations. The calculations permit a 
quantitative interpretation of EELS based on self-consistent-field (SCF) calculations of 
both excited-state and ground-state electronic structure including electronic densities of 
states (DOS) and charge transfer. 
 
FEFF8 considers a finite cluster of atoms, specified by their real-space coordinates.  
Infinite systems can be approximated by a finite cluster of sufficient size. Periodicity or 
symmetry is not used, and there is no need for the unit cell of band structure (BS) 
calculations.  In the calculation, one representative atom in the cluster is singled out to 
absorb the energy lost by the microscope’s electron beam. For crystals with more than 
one inequivalent crystallographic site, an experiment measures the sum of the spectra for 
each site with an appropriate weighting. The same must be done in the calculation.  
Because FEFF8 does not require or make use of crystal symmetry or periodicity, there 
are no restrictions on the shape of a cluster, therefore one can study aperiodic systems 
such as interfaces, nanometer sized precipitates, vacancies, impurities and other imperfect 
situations. 
 
 

3.d.2.2 The final state rule 
Unfortunately, the question of which independent-particle states to use in the calculation 
of (3.4.1) is not unambiguous. The RSMS approach (3.4.3) doesn’t explicitly calculate 
the final states, but they are implicit in the final state Hamiltonian and hence the Green’s 
function for the final state.  Typically a ΔSCF approach (which refers to different Self 
Consistent Field (SCF) calculations in the initial and final states) is used in XAS and 
EELS calculations, based on the final state rule (FSR).  This rule states that the 
calculation is done using Fermi’s golden rule with final states calculated with a final state 
Hamiltonian including an appropriately screened core hole (i.e., as in the “delta-scf” 
approach), while the initial states should be those for the ground state.  This has been 
shown to be nearly equivalent to core-level Bethe-Salpeter Equation theory (BSE).76  
However this FSR rule is implemented in different ways. Modern DFT/band-structure 
methods typically use real potentials and treat the core hole using a super-cell. In 
contrast, the RSMS approach in FEFF8 can be regarded as a quasi-particle 
approximation,77 where the final state Hamiltonian 2' / 2  ( )Coulh p m V E= + + Σ'  includes a 
core hole in the Coulomb potential V'coul and an energy dependent self-energy ( )EΣ . The 
self-energy is the analog of the exchange-correlation potential Vxc of ground-state Density 
Functional Theory (DFT). In the near edge region these two final-state Hamiltonians are 
comparable, i.e., ( )  xcE VΣ ≈ . However, the energy dependence of ( )EΣ  and damping 
from its imaginary part (which gives the photoelectron a finite mean free path) are crucial 
at high energies (e.g., well above a typical plasmon energy or about 30 eV) and account 
for the extrinsic losses in the final state. In addition, the real part of ( )EΣ  gives a 
systematic energy-dependent shift to the spectral features compared to those calculated 
with ground state DFT. 
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In principle the self-energy ( )EΣ  can be calculated from first principles using the GW 
approximation of Hedin, but this procedure is usually too computationally demanding for 
routine calculations. In practice, local density approximations for ( )EΣ are commonly 
used. For example, FEFF8 uses by default the Hedin-Lundqvist (HL) model which is 
based on the plasmon-pole model for an electron gas.78 This model is based on a 
dynamically screened exchange operator in an electron gas, and can be thought of as an 
extension of ground state DFT to excited states. Another model, which is an option in 
FEFF8, is the Dirac-Hara (DH) self-energy.79 This model only includes the static 
exchange terms and is essentially the local density approximation to the Fock exchange 
operator. In practice HL exchange is usually preferable in solids, while DH is sometimes 
better for molecules. In addition, broadening from the core-hole lifetime can be added by 
adding an additional complex constant –iΓ to the Hamiltonian h’.  
 
The treatment of the core-hole potential is often problematic due to the variability of 
core-hole screening in the final state. Thus various approximations are currently used for 
XAS and EELS calculations. For example, FEFF8 uses a self-consistent, fully screened 
core-hole, while band-structure codes typically use a self-consistent supercell model. 
These approaches should be similar for a sufficiently large supercell. Both of these 
approximations are improvements on ad hoc approaches such as the “Z+1” 
approximation. The Bethe-Salpeter equation (BSE) on the other hand is usually 
calculated with a RPA screened core hole, as implemented in FEFF,80 in contrast with the 
fully screened core hole of the FSR. 
Since the core-hole is attractive, its main effect is a shift of the spectra to lower energies.  
 
However efforts are currently being made to improve the treatment of various many-body 
effects in FEFF8. For example, linear response screening (i.e. RPA) of the core-hole may 
yield an approximation that is closer to the treatment in the Bethe-Salpeter equation 
(BSE). In addition, time-dependent density functional theory (TDDFT) yields screening 
of the external electric field and hence modified transition matrix elements.80 Also, the 
spectra can be extended to the optical region by replacing the sum over initial core levels 
by the valence density matrix. These developments are aimed at extending the FEFF8 
program to the low-loss region. Finally it has recently been shown that relativistic 
modifications must be made to equation (3.4.1) for anisotropic materials.4  These 
corrections are taken into account in a forthcoming FEFF8 release (FEFF8.5).75 
 
 
 

3.d.2.3 Potentials and Fermi energy 
 
FEFF8 approximates the total electronic potential for the initial and final states with 
spherically averaged muffin-tin (MT) potentials centered on each atom. In this 
approximation, the potential is constant in the interstitial region between the spheres.  
The potential, Fermi level (EF) and charge transfer may also be calculated self-
consistently.8  SCF potentials make near-edge calculations much more accurate, but are 
not necessarily needed for the fine structure at high energies. 
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3.d.2.4 Self-Energy 
 
As discussed in Sec. 3.d.2.2, the self-energy ( )EΣ  must be added to the final state 
Hamiltonian for calculations of the excited final states for EELS. One can choose a given 
model for the self-energy in FEFF8. The Hedin-Lundqvist self-energy is used by default 
and appears to be the best choice for most applications, especially for solids. In some 
cases (e.g., small molecular systems) the Dirac-Hara exchange-correlation potential, 
which is the local density approximation to the Fock exchange, can be preferable.  We 
compare in Figure 3-14 the nitrogen K-edge of h-GaN calculated using both models. The 
Hedin-Lundqvist is clearly superior, though it tends to have excessive loss near the edge, 
i.e., the theory exhibits more broadening (i.e., smaller fine-structure) than the experiment. 
 

 
Figure 3-14 Spectrum of the nitrogen K-edge of h-GaN for two different models of the self-energy: Hedin-
Lundqvist (H-L) and Dirac-Hara (D-H).9 A cluster of 158 atoms was used for FMS. Open circles are 
experimental data taken from Moreno et al.81 

 
 

3.d.2.5  Core hole 
 
It is widely thought that EELS directly measures the ground-state electronic structure 
through the LDOS. However, this interpretation is misleading because of the effects of 
the core hole and the self-energy on the spectra. The final state Green’s function and 
hence the density matrix in Eq. (3.4.17) must be computed in the presence of a core hole, 
and is different from the unperturbed unoccupied states making up the ground state DOS. 
In addition EELS includes thermal effects of vibrations and disorder. All these final state 
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effects shift the spectra with respect to the ground state DOS. By default FEFF8 
calculates the spectrum in the presence of a screened core hole according to the final-state 
rule. However FEFF8 can also do calculations without a core hole in order to assess its 
effect.  We have found that the default screened core hole in FEFF8 can be comparable to 
that calculated with linear response (RPA screening), which is used in the Bethe-Salpeter 
equation approach. For insulators, a core hole is usually essential.  On the other hand, 
there are cases where the effect of the core hole is almost completely screened out, e.g., 
in metals for soft x-ray edges of order 1000 eV and below. For these cases the mobile 
electrons of the metal completely ‘screen’ the core-hole potential. In such cases, the 
NOHOLE card can be used, which roughly simulates the effect of complete core-hole 
screening by causing FEFF8 to calculate potentials and phase shifts as if there were no 
core hole. For L2 or L3 edges, this often gives better prediction of white-line intensities of 
the transition metal series.82  
In Figure 3-15 we compare the calculated N K-ELNES of GaN with and without a core 
hole. Note that the effect of the core hole is to red-shift the spectrum, increasing the 
intensity close to the edge threshold and therefore sharpening the edge threshold. This is 
a general trend. For GaN, the default fully-screened core hole yields spectra in good 
agreement with experiment, while that without a core hole is significantly blue-shifted. 

 
Figure 3-15 Spectra of the N K-edge calculated with (CH) and without (NoH) a core-hole.  Open circles 
correspond to experiment.9 

 
We remark that FEFF8 does not use periodical boundary conditions, and therefore only 
one core hole is used in the calculation of EELS from a given atom. Thus the unphysical 
core-hole – core-hole interactions and the related supercell size problems of band 
structure codes83 are not present in the RSMS approach. 
 
 

3.d.2.6 ELNES and EXELFS 
 
Depending on the energy range of interest, FEFF8 uses one of two different methods for 
calculating the Green’s function and the EELS spectrum. These methods coincide with 
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the two regions of the spectrum often distinguished as the near-edge region (ELNES), 
and the extended region (EXELFS). The two methods generally overlap over a wide 
enough energy range that one can combine them into a full spectrum, from the threshold 
up to hundreds of eV (Figure 3-17). 
 
For the calculation of near edge structure (ELNES) it is often preferable to use the Full 
Multiple Scattering (FMS) technique, since the multiple-scattering path expansion 
converges slowly or not at all near the edge. Within a finite sphere centered on the 
absorbing atom, all multiple-scattering paths are summed to infinite order by performing 
a matrix inversion.  
 
One of the important tasks in any FEFF8 calculation of crystals is to ensure that the 
results are converged with respect to the size of the finite real space FMS cluster used to 
represent the crystal (Sec. 3.d.2.1).  The calculation must be repeated with increasing 
cluster size until the details of the spectrum have converged to one's  satisfaction. 
Typically, a converged ELNES calculation requires a cluster of about 150 atoms, 
depending on the core-hole lifetime. However bigger clusters (300-500 atoms) may be 
needed for some materials, e.g. for low Z materials like Si with shallow edges and long 
core-hole lifetimes.  
 
An interesting advantage of that convergence process, and of the RSMS method in 
general, is the possibility of identifying peaks in the ELNES data with scattering events 
from particular shells in the cluster. In Figure 3-16 we show the effect of increasing the 
cluster size of the MS calculation of the N K-edge in h-GaN. The edge changes for each 
additional N shell.  Convergence in terms of the number of peaks in the fine structure 
appears to be reached after the inclusion of eight shells. When compared with a 
calculation for a cluster of 42 shells (about 480 atoms), we can see that the fine structure 
is still changing, but such changes can only be checked by using high resolution EELS 
data. 
 
A comparison with the LDOS allows the assignment of spectral peaks to electronic 
transitions between specific states. 
 
 
 
FMS calculations are not usually accurate beyond k = 6 Å-1 (100 eV) due to the usual 
computational limit on the angular-momentum basis to lmax = 3 - 4.  For the calculation of 
extended fine structure (EXELFS), the Path Expansion must be used instead. (See Figure 
3-17).  The scattering contributions of all paths up to a maximal path length are summed.  
The spectrum needs to be converged with respect to the maximal path length by doing 
several calculations and comparing the results. 
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Figure 3-16 Effect of increasing the number of scattering shells for the FMS calculation of the nitrogen K-
ELNES of h-GaN (left panel). Comparison between experiment (open circles) and calculation using 42 
shells (right panel).9 

 
 
 

 
Figure 3-17 Near -edge (ELNES) and extended (EXELFS) spectrum of the N K-edge of GaN.  ELNES is 
calculated using the FMS technique, while EXELFS is treated using the path expansion. The two 
simulations overlap smoothly at about 50 eV above threshold, a typical value.9 

 
 
 



 47

3.d.2.7 Broadening 
 
Experimental spectra are broadened by at least three different mechanisms84 : the lifetime 
of the initial (core) state, the lifetime of the final (conduction) state, and instrumental 
broadening. The first two are taken care of automatically by FEFF8, the last can be set by 
the user. FEFF8 by default includes values for the core-hole lifetime. These core-hole 
lifetimes are taken from tabulated values for each edge and element.85  Broadening due to 
the lifetime of the final-state, and its energy dependence, is contained in the imaginary 
part of the self-energy.  
 
 
 

3.d.2.8 Orientation dependence 
 
Generally, an EELS experiment is sensitive to the relative orientation of the sample with 
respect to the beam, so rotating the sample alters the observed spectrum.  One can specify 
the direction of the polarization vector in FEFF8.  In EELS calculations, this corresponds 
to the direction of incidence of the electron beam in dipole approximation (see Sec. 
3.b.2).  In absence of polarization information, FEFF8 simply calculates a spectrum 
averaged over all directions of polarization. 
In Figure 3-18 we show the orientation dependence of the nitrogen K-edge of h-GaN.  
The calculation reproduces the experimental energy scale well. Discrepancies with 
experiment may be due to the collection and convergence semi-angle (about 0.4 and 0.3 
mrad, respectively) not accounted for in the calculation, as the intensities of the peaks 
have been shown to be sensitive to these parameters.86  This effect is more important for 
the beam  // 001, due to the conditions of the experiment.81 



 48

  
Figure 3-18 Experimental (open circles) and calculated (solid line) spectra for the N K-edge of the 
hexagonal phase, for two different main directions of the electron beam k. In the upper picture, the beam 
enters and exits the sample along its 100 direction.  In the lower picture, the beam hits the sample along the 
001 direction. 9 

 
We remark that in reality there is also orientation dependence due to channeling effects in 
periodic systems (crystals in zone axis orientation).  Such effects are not included in our 
calculations. 
 

3.d.2.9 Non-dipole transitions 
 
In many cases, EELS experiments are entirely dominated by dipole transitions, and 
therefore FEFF8 calculates the dipole-selected spectrum by default. Sometimes, though, 
quadrupole contributions may be unavoidable, e.g. at large scattering angles or when no 
final states of dipole allowed character are available. They may even be the quantity of 
interest. In FEFF8 one can add quadrupole or magnetic-dipole contributions, or select 
only the L→L-1 (e.g. p→s) or the L→L+1 (e.g. p→d) dipole transition. 
In Figure 3-19 (upper panel) we show the Ga L3-edge for h-GaN and its L-1 and L+1 
components. In the lower panel we compare the quadrupole contribution to the Ga d-
DOS. It follows the d-DOS closely. The quadrupole contribution has been scaled for 
convenience; it contributes less than 1% to the total spectrum in the upper panel. 

k  100 

k  001 
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Figure 3-19 The Gallium L3-edge of h-GaN and its L-1 and L+1 dipole contributions (upper panel). The 
quadrupole term of the L3-edge is compared to the Ga d-DOS (lower panel).9  It has been scaled by a factor 
of 105 for comparison to the DOS, so it contributes less than 1% to the total spectrum. 

 
 
 

3.d.2.10 Debye-Waller factors 
 
EELS experiments are performed at finite temperature. FEFF8 incorporates  temperature 
effects by including Debye-Waller (DW) factors in the calculation. It calculates 
correlated-Debye-model DW factors for each path when using the Path Expansion for 
EXELFS, or multiplies each free-electron propagator by a single-scattering DW factor 
when using Full Multiple Scattering for ELNES. DW factors add extra broadening to the 
spectrum and wash out the details, increasingly as one goes further away from the edge 
threshold.  The effect of DW factors on ELNES tends to be fairly small, as we can see in 
Figure 3-20.  At higher energies, however, temperature effects become very important 
and obscure many details (see Figure 3-21).  This can be intuitively understood in terms 
of the radial distribution function, which gets smeared out by vibrations of atoms around 
their lattice positions, and is related to the Fourier transform of the EXELFS fine 
structure. 
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Figure 3-20 The N K-edge of GaN calculated with Debye-Waller factors at 0K, and with Debye-Waller 
factors at room temperature (300K). The Debye temperature of GaN is 600K.9 

 
 

 

Figure 3-21 The fine structure χ (k) of the N K-edge of GaN.  On the x-axis is fermik E E= −   (χ = μ / 

μ0 -1, where μ is the absorption spectrum and μ0 is the atomic background).  As temperature increases from 
zero up, thermal vibrations are seen to wash out the details of the spectrum, smearing out the spectrum into 
a smooth background.9 
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3.d.2.11 Density of States 
 
Comparison of the site- and symmetry-projected DOS and ELNES data helps one to 
connect spectral features to transitions to particular states. In FEFF8, the angular-
momentum-projected local density of states is calculated for each distinguishable atom in 
the system using Full Multiple Scattering.  The energy resolution of the calculated DOS 
is limited by broadening due to the cluster size. 
 
In Figure 3-22 we compare the experimental spectrum of h-GaN to the spectrum and the 
N p-DOS calculated by FEFF8. The spectrum follows closely the N p-DOS, as expected 
according to the dipole approximation. 

 
Figure 3-22 Comparison of the experimental h-GaN N K-edge (open circles), and the spectrum (full line) 
and N p-DOS (dashes) calculated by FEFF8.  The spectrum clearly corresponds to the N p-DOS.9 
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4.  Relativistic calculations of electron energy loss 
spectra 
 
 
One may be surprised to find a whole chapter in the “results” section of a dissertation 
devoted to the basic theory of a well-established technique.  However, the real surprise is 
that Electron Energy Loss Spectroscopy theory and calculations have indeed been based 
on a deficient theory for a long time.  It was always assumed that a relativistic treatment 
of electron scattering is unnecessary.  Given that electrons in an EELS-experiment are 
routinely accelerated to kinetic energies of 300 keV, corresponding to a velocity v = 0.8 
c, it is surprising that such a bold assumption has never been the object of much scrutiny.  
Instead, it was believed that it was sufficient to use the relativistic relations between the 
beam electron’s energy and its mass and wave vector.31,87  This leads to an overall factor 
that does not change the shape of the spectrum. 
Some work on relativistic atomic cross-sections is mentioned in Egerton15 and Dwyer88. 
 
Recently, it became apparent through the work of Jouffrey et al.4 and Schattschneider et 
al.5 that the non-relativistic description is only valid for isotropic experiments.  In 
anisotropic situations (which are sometimes desired and sometimes unavoidable), 
significant mistakes are introduced.  In particular, a material-independent property of the 
EELS-experiment, the so-called magic angle, exposed these flaws.  The theoretically 
predicted value of this magic angle, which is a value of the spectrometer aperture for 
which the orientation dependence of the spectrum cancels out due to integration over 
momentum transfer, turns out to be off by a factor of four for the graphite C K edge (at a 
beam energy of 300 keV).  Such errors – hardly a small correction – have significance for 
the interpretation of experiments, which depend strongly on the collection and 
convergence semi-angles. 
 
Although the take-home message – that relativistic effects significantly alter anisotropic 
EELS spectra and are responsible for discrepancies such as the magic angle – was 
discovered and published by Jouffrey et al. and Schattschneider et al., more work needed 
to be done, and that work is presented in this chapter. 
First of all, I present a theoretical derivation that is more rigorous than that of 
Schattschneider et al.5.  Secondly, Schattschneider et al. only considered the small 
impulse transfer – dipole approximation.  Here, we give expressions that are valid for any 
order of the interaction potential and are valid for arbitrary impulse transfer.  Finally, 
writing down a formula does not mean the EELS community is now ready to use it.  I 
have implemented two flavors of relativistic EELS in the ab initio codes FEFF8 and 
WIEN2k, and these codes and their results are discussed, revisiting in particular the 
magic angle of graphite. 
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4.a. General relativistic theory 
 
In this section, we derive a general relativistic formula for the EELS cross section, as 
given in Sorini et al.89,70 
  
We consider a probe electron which scatters off of a macroscopic sample of condensed 
matter. Very similar problems have been solved long ago using both a semi-classical 
approach90, and also using a fully quantum-mechanical approach.91,92,93  The fully 
quantum-mechanical and fully relativistic case of scattering two plane-wave electrons has 
long been a textbook problem.94,95  This old problem was revived recently in two 
interesting papers by Jouffrey et al.4 and Schattschneider et al.5 in which a flaw in the 
standard theory is pointed out.  The flaw is simply that, in a classic paper92, Fano argues 
that the so-called “longitudinal" and “transverse" matrix elements for the scattering 
process may be summed incoherently.  In fact, this is only true if the sample considered 
possesses certain symmetries. In a later review article93, Fano states this approximation 
explicitly; his formula for the cross-section is only applicable to systems of high 
symmetry. This caveat which is only mentioned clearly in Fano's later review article 
seems to have been ignored by many, and indeed turns out to have been the source of the 
magic angle mystery.  Schattschneider et al. showed that if one correctly sums and 
squares the transition matrix elements then, in the dipole approximation, one finds the 
correct relativistic magic angle. 
 
We consider electron scattering within the formalism of Coulomb gauge QED and will 
reproduce the results of Jouffrey et al. and the theory of Schattschneider et al. up to a 
simple correction of order 2E mc  , where E is the energy loss. 
 
One very nice aspect of the formalism of Schattschneider et al. is its surprising simplicity. 
They follow the semi-classical approach of Møller90, but with the added simplification of 
working with a probe and sample described by the Schrödinger equation rather than the 
Dirac equation. The also find that the theory is simplified by choosing to work in the 
Lorentz gauge. 
Unfortunately, the theory of Møller is somewhat ad hoc in that a classical calculation in 
the Lorentz gauge is modified by replacing the product of two classical charge densities 
by the product of four different wave functions in order to obtain a transition matrix 
element.  This procedure is justified by the fact that it reproduces the correct result, but 
appears to be slightly logically inconsistent.  We feel that it will be useful to derive the 
result of Jouffrey et al. from a more fundamental starting point and see if anything 
interesting turns up. As it turns out, the theory of Schattschneider et al. is slightly 
incorrect, but only in such a way that can be easily explained via single particle quantum 
mechanics; although Schattschneider et al. work explicitly in the Lorentz gauge, they also 
make the assumption that 
 ( ) ( )=p .A r A r . p  (4.1.1) 
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which, of course, is only true in the Coulomb gauge.  In the end, this mistake only effects 
the final results at order 2mcω  where ω is the energy-loss of the probe. Thus the effect 
is negligible in many cases. Even so, we still believe it is useful to present a fully 
quantum-mechanical treatment along the lines of Fano93, but without the assumption of 
high symmetry of the sample. That is, our treatment is as general as that of 
Schattschneider et al. as far as the symmetry of the sample is concerned.  But, beyond the 
treatment of Schattschneider et al. and Møller, we take as our starting point the many-
particle Hamiltonian of QED.   
 
The basic starting point of the theory is the Hamiltonian in Coulomb gauge94: 
 intel radH H H H= + +  (4.1.2) 
where the Hamiltonian has been split into three parts: 
The unperturbed electron part: 
 ( )† 2( ) . ( )elH d c mcψ α β ψ= +∫ x x p x  (4.1.3) 

where ψ(x) is the second-quantized Dirac field, αi and β are the usual Dirac matrices, m 
is the electron mass, and c is the speed of light. 
The unperturbed (transverse) radiation part: 

 †
, ,rad kH a aα α

α

ω= ∑∑
2

k k
k =1

=  (4.1.4) 

where ak,α destroys a photon of momentum k, polarization ε(α)(k), and energy ħωk. 
And the interaction part: 

 
2 † †

†
int

( ) ( ) ( ) ( )( ) . ( ) ( )
2
eH e d d d ψ ψ ψ ψψ α ψ= +

−∫ ∫
x x y yx x A x x x y

x y
 (4.1.5) 

where 

 ( )
2

† *2( ) i i

k

c a e a e
V α α α α

α

π ε ε
ω

−= +∑ k.x k.x
k k k k

k

A x =  (4.1.6) 

and e is the charge of the proton. Also, we work in a box of volume V . 
Let us next specialize to the case of a fixed number (N +1) of electrons where the N +1-th 
electron is singled out as the “probe” and the remaining N electrons make up the sample. 
We also introduce a lattice or cluster of ion-cores which will be treated classically and 

which gives rise to a potential 
2/

1
( )

N Z

e core
i

Zev −
=

−
=

−∑
i

x
x R

 as seen by the electrons. 

In this case our Hamiltonian becomes: 
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∑

∑ ∑ ∑

p A r p A r

r r
r r r r

(4.1.7) 

 
where the coordinates which are not labeled by an index refer to the probe electron. vcore-

core is the interaction between ion cores which is a constant and will be dropped 
henceforth. 



 55

Next, the interaction of the sample electrons among themselves and with the potential of 
the ion cores may be taken into account by a single-particle self-consistent potential v(x) 
which includes both ve-core(x) and exchange-correlation effects. The interaction of the 
probe electron with the effective single electron of the sample will be considered 
explicitly.  The difference between this interaction and the actual interaction between the 
probe and sample can be accounted for by introducing another potential v0(x) which is 
not necessarily the same as v(x); v0(x) should be “closer” to the pure ve-core(x) potential 
than v(x).  The potential v0(x) leads to diffraction of the probe electron which will not be 
considered here in order that we can make contact with the theory of Schattschneider et 
al.  It is also for this reason that we have introduced the single-particle picture of the 
sample  (along with the fact that we would eventually like to apply this theory to real 
condensed matter systems in a practical way). 
With the single-particle approximation for the sample, we have 

 

2 2

2

. ( ) . ( )

'( ) ( )

s s
e eH c mc c mc
c c

ev v Hγ

α β α β⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

+ + + +
−

s s

s
s

p A r p A r

r r
r r

 (4.1.8) 

As stated above, in the remainder of this derivation we will set ' 0v → , but generalization 
of the theory to include diffraction should not be difficult. 
As it turns out, we may start from a Schrödinger treatment of the probe and sample rather 
than a Dirac treatment.  Again, this facilitates contact with the theory of Schattschneider 
et al.  We will indicate later how the results change if we retain a Dirac treatment of the 
electrons.  Thus we may start with the Hamiltonian: 
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 (4.1.9) 

 
 
In our theory the unperturbed states are then direct products of unperturbed sample 
electron states, unperturbed probe electron states (plane-waves, ignoring diffraction) 
and the free (transverse) photon states. Also, from now on we ignore the interaction terms 
which are O(A2). Thus our perturbation is: 

 
2

. ( ) . ( )e e eU
mc mc

= + +
− s s

s

p A r p A r
r r

 (4.1.10) 

and we are interested in matrix elements of 
 0 ...U UG U+ +  (4.1.11) 
where 

 0
0

1( )G E
E H iδ

=
− +

 (4.1.12) 

and δ is a positive infinitesimal. 
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The matrix elements are taken between states (ordered as: probe, sample, photon) 
 0ik i  (4.1.13) 
and 
 0fk f  (4.1.14) 
 
To lowest order (e2) there will be a “longitudinal” (instantaneous Coulomb) contribution 
to the matrix element, and a “transverse” (photon mediated) contribution.  See Figure 4-1 
for diagrams of these processes.   
 
 
 

 
Figure 4-1 The lines labelled by momenta ki and 
kf represent the probe particle. The lines labelled 
by the letters i and f represent the sample 
particle. The dashed line is the instantaneous 
Coulomb interaction. The wiggly lines are 
photons. Time flows to the right. 

 

 
 
 
 

 
Figure 4-2 The four relevant momenta: ki is the 
initial momentum of the probe particle, kf is the 
final momentum of the probe particle, q is the 
momentum transfer ki – kf and kτ is the part of 
either the initial or final momenta which is 
perpendicular to the momentum transfer. 

 
 
 
 
 

 
 
 
 
Instead of going through all the tedious details of the perturbation theory, we will simply 
write down the matrix element: 
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2

2 2 2 2

4 1 1 jj
i isT pkeM f e i f e i

V q c q m m
π

ω

⎧ ⎫⎪ ⎪= +⎨ ⎬−⎪ ⎪⎩ ⎭

q.r q.r  (4.1.15) 

where kT (see Figure 4-2) is the part of the initial (or final) momentum which is 
perpendicular to the momentum transfer q : 

 2 2
l j l jj l l

T lj f lj i

q q q q
k k k

q q
δ δ

⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (4.1.16) 

The result of Eq. (4.1.15) is easy to understand diagrammatically.  For example, to each 
wiggly line of momentum q and energy ω we may assign a value 

 2

1 2i j
ij

q q c
cq q Vq

πδ
ω

⎛ ⎞
−⎜ ⎟− ⎝ ⎠

=  (4.1.17) 

The other parts of the diagrams are similar. 
At this point we note that the relativistic version of Eq. (4.1.15) can be obtained by 

making the replacement c
m

→
p α  . 

 
Eq. (4.1.15) is equivalent to Eq. (12) of Fano93 which does not include any offending 
“incoherent” approximation.  The offending equation is given as Eq. (16) of Fano93 in 
which the matrix elements have been summed incoherently. 
Before continuing on to the dipole approximation it will be useful to rewrite (4.1.15)by 
using the definition 

 2q
= − 0

T 0
q.kk k q  (4.1.18) 

to eliminate kT in favor of k0 (or equivalently v0). Making this replacement we arrive at 

 
2

2 2 2 2 2 2 2 2

//4 1
i

i
f m e if m ieM f e i

V q q c q c q
π

ω ω

⎧ ⎫⎪ ⎪= − +⎨ ⎬− −⎪ ⎪⎩ ⎭

q.r
0q.r 0

v .pq.pq.v  (4.1.19) 

which can be rewritten as: 

 
2 2

2 2 2 2 2 2

.4 1 1 1
/

ieM f e i
V q c mc q c m
π ω

ω ω
⎛ ⎞⎛ ⎞= − − −⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

q.r 0v p q.p  (4.1.20) 

where we have made use of ω=0q.v  in order to cancel certain terms which appear after 
commuting the exponential through to the far left. Also, we have removed the label s 
from the position and momentum of the sample electron. 
Eq. (4.1.20) looks just like Eq. (6) of Schattschneider et al.5 except for the “extra” term 

 1if e i
mω

⎛ ⎞−⎜ ⎟
⎝ ⎠

q.r q.p  (4.1.21) 

Fortunately, this term may be greatly simplified by considering the commutator 

 
2 2

0, ,
2 2

i i ip qe H e e
m m m

⎡ ⎤ ⎛ ⎞
⎡ ⎤ = = − −⎜ ⎟⎢ ⎥⎣ ⎦

⎣ ⎦ ⎝ ⎠
q.r q.r q.r p.q  (4.1.22) 

where the first equals sign follows from the fact that eiq.r commutes with everything in H0 
except for the kinetic term of the sample electron. Then, using the fact that 
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 [ ] ( ) ( )0, i ff anything H i f anything i E E f anything i ω= − = −  (4.1.23) 

we have 

 ( )
2

2
i i qf e i f e i

m m
ω

⎛ ⎞
− = − −⎜ ⎟

⎝ ⎠
q.r q.r p.q  (4.1.24) 

and thus 
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i i qf e i f e i
m mω
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q.r q.rp.q  (4.1.25) 

Making the above replacement in Eq. (4.1.20) we find 
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π ω
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q.r 0v p  (4.1.26) 

and we see that the “extra” term only changes the result by order ω/mc2; 
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 (4.1.27) 

which is exactly what Schattschneider et al. would have obtained if they hadn't neglected 
their commutator [ ],p A .  It is especially instructive to judge the term they neglected 
from the top line of Eq. (4.1.27) : in a typical EELS experiment, ω = 0-2000 eV, while 
the electron rest mass corresponds to 500 000 eV.  It is therefore not a problem to neglect 
the effect of the commutator in normal EELS applications. 
 
 

4.b. The Dipole Approximation 
 
The dipole approximation features rather prominently in this work, as it does in the EELS 
community overall.  While there is general agreement that the approximation is valid 
when the impulse transfer is small, and that it simplifies EELS by selecting only a limited 
number of final states f  to contribute to the cross section (hence the alternative name 
“dipole selection rule”), the resulting formalism depends somewhat on how exactly one 
conceives the impulse transfer to be small.  “Dipole approximation” may refer to any of 
the following : 
* linear in impulse transfer 
* approximating the exponential factor in the matrix element by the linear term of its 
Taylor expansion 
* only “Δl=1” states can contribute (meaning that the orbital quantum number of the final 
state should be exactly 1 larger or smaller than that of the initial state) 
* first order in the interaction potential 
* … 
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These statements may or may not be equivalent depending on the formalism and the 
calculation that it is applied to.  A clear example of this will be given when we discuss 
the magic angle later on. 
 
As the angular momentum quantum number l has a clear physical meaning, I will use it 
to define monopole, dipole, quadrupole, octopole, … transitions as those for which 

0,1, 2,3,...il l− =  where the index i labels the initial (core) state.  So, unless reference is 
made to another definition, I will mean by dipole terms of the cross section those 
transitions for which Δl = +1. 
 
 
For now, we will choose another particular “dipole approximation”, essentially following 
Schattschneider5 and applying the Taylor expansion to the exponential factor, and 
truncating it after the first order term.  In this dipole approximation Eq. (4.1.27) reduces 
to 

 
2

2 2 2 2

4 1eM f i i
V q c mc
π

ω
⎛ ⎞= − +⎜ ⎟− ⎝ ⎠

0v .p q.r  (4.2.1) 

The term 21
2mc

⎛ ⎞−⎜ ⎟
⎝ ⎠

0v .q  doesn't contribute because the initial and final state are orthogonal. 

Now, we apply Eq. (4.3.32) and make use of the replacement i
m

ω→
p r which is 

appropriate within the matrix element to find 

 ( )2

2 2 2 2

4 -e iM f i
V q c c
π

ω
⎛ ⎞

= ⎜ ⎟− ⎝ ⎠
0 0v q.v

q .r  (4.2.2) 

For a velocity v0 in the z-direction we see that relativistic effects have modified the 
impulse transfer as 
 ( )21 ; ,z z x yq q q q unchangedβ→ −  (4.2.3) 
which is the same “shortened q-vector" that appears in Eq. (15) of Schattschneider et al. 
and Eq. (2) of  Jouffrey et al.  Here, β = v0/c . 
 
This description ought to be valid whenever the argument of the Taylor expansion, q.r, is 
small.  We can assume that the initial state, which is, for core loss spectra, tightly bound 
to the atom nucleus, limits the radial integral of the matrix element.  Therefore, r is often 
taken to be limited to something of the order of the Bohr radius, although the initial state 
may be significantly larger due to delocalization.  The magnitude of the impulse transfer 
depends on the beam energy, energy loss and scattering angle at which measurements are 
made.  For the C K edge measured around 300 eV energy loss with a beam energy of 300 
keV with a collection angle of the order mrad, impulse transfer values of up to 1-2 
inverse Bohr radius contribute to the cross section.  It is not immediately clear to me, 
then, that one could assume that q is small for the calculation of the matrix element. 
Neither is the opposite line of reasoning clear : even when q is larger, the overlap of 
initial and final state can make the matrix element very small for certain states, and thus 
suppress quadrupole and higher transitions. 
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The chapter on the magic angle will prove that the “dipole selection rule” is valid but the 
“small q approximation” is not (or more poorly than usually assumed) for the C K edge. 
 
 

4.c. Angular momentum expanded formalism 
 
 
In this chapter, we go back to the general formulation we’ve developed so far (parallel to 
Schattschneider et al.5), but we avoid making the assumption that q is small enough to 
make the small q or dipole approximation.  By expanding the double differential 
scattering cross section (DDSCS) in spherical harmonics, we thus develop a formalism 
that describes arbitrary transitions (monopole, dipole, quadrupole, etc.) for arbitrary 
momentum transfer (although we still require the impulse transfer to be small compared 
to the beam momentum – which is always the case in EELS-experiments in the TEM – 
since otherwise the commutator corrections of (4.1.27) become important).  We also 
achieve a formalism that can readily be implemented in an ab initio EELS code. 
Our present work is to be seen as the relativistic generalization of Nelhiebel et al.34, 
where a similar formalism was developed neglecting relativity. 
 

4.c.1.  General theory of the DDSCS in a l,m-
representation. 

 
 
The relativistic EELS double differential cross section is given by (Sec. 4.a or Ref.5): 
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 (4.3.1) 

The exponential factor can be expanded using the Rayleigh formula : 

 ( ) ( ) ( )*

0

4ie i Y Y j qr
λ

λ
λμ λμ λ

λ μ λ

π
+∞

= =−

= Ω Ω∑ ∑q.r
q r  (4.3.2) 

We assume the initial state i to be a core state of the following simple form 
 ( ) ( )

il
( )

ii mi u r Y= Ωr  (4.3.3) 
and the summation over initial states to reduce to a spin factor of 2 and a summation over 
mi.   This is a reasonable description for a tightly bound “core state”.  For low-loss EELS, 
where the initial state is a valence state, the initial state needs to be described as the final 
state below, and the formalism would look different (i.e., contain a “JDOS” or Joint 
Density of States). 
The impulse operator is given by 
 i= − ∇=p  (4.3.4) 
In spherical coordinates (r,θ,φ), the Nabla operator is of the form 
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 1 1
sinr r rθ θ φ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂r θ φe e e  (4.3.5) 

where e are normalized basis vectors. 
Introducing spherical harmonics Ylm 
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which are orthonormal and form a complete basis set for [0,π]x[0,2π], and using 

 ( ) ( ) ( ) ( ) ( ) ( )1cot 1 ilm
lm lm

dY
m Y l m l m e Y

d
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+

Ω
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we can express (4.3.5) in a basis of spherical harmonics : 
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As sincos
z r r

θθ
θ

∂ ∂ ∂
= −

∂ ∂ ∂
, we know that 

 cos sinz r θθ θ∇ = ∇ − ∇  (4.3.9) 
This is useful since we now choose v0 along the z-axis, and therefore only the z-
component of p is applied to the initial state i.  It is important to remember that our 
formalism is thus developed in the “laboratory frame”, with its z-axis defined by the 
electron beam and not by the crystallographic axes of the sample. 
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Finally, we use 
 1
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Now 
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where we have chosen to expand the final state f as 
 ( )f

lm llm f d u r=  (4.3.13) 
and ul are normalized functions (e.g., the APW basis functions of WIEN2k) and the d 
coefficients will, when summed over all final states, form the density of states. 
 
We can write the cosine and sine functions as spherical harmonics of first order, 
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 and then use the formula 
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we get three-Ylm-integrals after all, at the expense of more Wigner 3j coefficients : as 
(say) l2=1, (4.3.15) has only 2 (simple) nonzero terms.  The symbols in round brackets 
are Wigner 3j-coefficients, as defined by the Racah formula.96 
We recall that 
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where [ ] 2 1n n= + .   
Eq. (4.3.15) with l2=1 then becomes 
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and therefore 
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This leads to 
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(4.3.19) 

The terms ta are defined by the second equality of (4.3.19) and depend on all indices of 
the expansion, but for brevity these are hidden.  Term t1 is the non-relativistic term and 
terms t2-t5 are relativistic, making it very trivial to reduce our results to the non-
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relativistic limit : c goes to infinity, terms 2-5 disappear.  Each term has its own selection 
rule given by the 3j elements.  The importance of the relativistic terms is seen to depend 
directly on the velocity v0 of the beam electrons. 
 
Now (4.3.1) becomes 
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The factor 2 outside the summations is the spin factor.  We have defined the density of 
states (dos) as 
 ( ) ( )*

' '; , ' ' f f
lm l m f

f
dos E lm l m d d E E

ν

δ
≡

= −∑
k

 (4.3.21) 

 
In some materials of high symmetry, the DOS has no cross-terms, meaning that only 
terms with l=l’ and m=m’ will contribute.  We will look at this in more detail in Sec. 
4.c.3. 
 
 

4.c.2.  The dipole terms and correspondence to 
Schattschneider et al. 

 
 
We have already remarked that the “dipole approximation” is an ill defined term.  It is 
essentially an approximation made for small q ; however, this approximation can be made 
in different ways.  The most common way is to use a first order Taylor expansion for the 
interaction potential : 
 1ie i≈ +q.r q.r  (4.3.22) 
Retaining terms of first order after multiplication with the relativistic interaction term, 
one obtains the most celebrated aspect of the dipole approximation : the dipole selection 
rule, that allows only transitions to states with orbital quantum number +1 or-1, and 
forbids all other transitions. 
 
It is not immediately clear how to do the same thing starting from (4.3.19).  Here, we 
gather all terms corresponding to transitions into l+1 or l-1 states.  This can be done 
without assuming that q is small. 
It will be instructive to see which additional approximations are necessary to recover the 
results achieved earlier by using the Taylor expansion. 
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We will consider the graphite C K-edge, that is, a transition from an initial carbon 1s-
state.  This simplifies the notations ; generalization to another edge would be trivial but 
make all the formulas twice as long.  As most ELNES experiments obey this, we will 
calculate the p-spectrum, i.e., the transitions to a final state of p-character.  Expressing 
this in angular momentum indices, 
 0 ; ' 1 ; 'i il m l l m m= = = = =  (4.3.23) 
The “dipole” matrix element (4.3.19) can now be expressed as : 
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where we have introduced compact notations for the radial integrals : 
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The radial integral of type (1) is the non-relativistic radial integral ; the other two are 
relativistic contributions. 
We now notice that the integral (2)

21j  is actually of second order in q.  It can be shown 
numerically to be tiny compared to the other terms in (4.3.24), and it can be safely 
ignored for our purpose here. 
 
The total cross-section can be obtained similar to how we obtained Eq. (4.3.20): 

 

( )
( )

( )

( )( )

( )

2
2 2 (2)(1)2

20 0 0111
2 22

2

2(1)
21 1 11

11

(1) (1)
10 10 011 11
1 1 11 2

4 ' 3( , ) 2 4 cos
4 4 3 4

32Re sin
8 4

3 32Re sin cos
8 44 4

i

i i

a v jjkE D
E k mcEq c

jD D e

vj jD e D e
mc

π

φ
σ

φ φ

γσ π θ
π π π

θ
π π

θ θ
π ππ π

−

−

−
−

⎧ ⎡ ⎤∂ ⎪= +⎢ ⎥⎨∂ ∂Ω ⎛ ⎞ ⎢ ⎥⎪ ⎣ ⎦− ⎩⎜ ⎟
⎝ ⎠

⎡ ⎤
+ − ⎢ ⎥

⎣ ⎦

⎡ ⎤
+ − +⎢ ⎥

⎣ ⎦

q

q q

q

q

q q

q =

=

=
( )

(2)
01

3 4
j

π

⎫⎡ ⎤⎪
⎢ ⎥⎬
⎢ ⎥⎪⎣ ⎦⎭

(4.3.27) 

where the π and σ density of states have been introduced : 
 * * *

10 10 11 11 1 1 1 1;f f f f f fD d d D d d d dπ σ − −= = +  (4.3.28) 
The cross section has been split into a π contribution, a σ contribution, and a contribution 
consisting of “cross-terms”.  The angles have received a subscript “q” to indicate that 
they are the spherical coordinates of the impulse transfer vector, which is generally not 
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the same as the scattering angle (which is the angle between the incoming and outgoing 
electron beam). 
 
It is clear that (4.3.27) is not (4.2.3).  This is a clear indication that the transition selection 
rule (l=li+1) is not the same as the small q approximation.  Let us now make the 
additional assumption that q is small. 
 
We remark that for small q (and let us from now on assume that we are working in this 
approximation) the spherical Bessel function can be approximated as : 
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Now, writing 
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and using that 
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and knowing from theory [Eq. (12) in Schattschneider5] that 
 0 cos qv qω θ=  (4.3.32) 
we see that 
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Using this result, (4.3.27) becomes 
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with β = v0 / c. 
 
For interpretation, let us consider what would happen if we were to change a vector q 
into another vector q’ by shrinking its z-component by a factor (1-β²) whilst leaving the x 
and y components unaltered. 
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In our small q approximation, (1)

11j  is linear in q.  We see now that in (4.3.34) the q-
dependence of the dipole cross section deviates in two ways from the non-relativistic 
theory of Nelhiebel34 : 
* the prefactor in square brackets has a modified q-dependence and becomes larger for 
high energy losses 
* the remaining part (similar to the dynamic form factor or DFF) behaves as if the 
impulse transfer has diminished by a factor (1-β²) in the direction parallel to the electron 
beam. 
 
These are exactly the observations made in Jouffrey et al.4 , and (4.3.34) is identical to his 
“dipole approximation” results (except that he does not discuss cross-terms).  This 
confirms that our formulae (at least the part relevant for the dipole approximation) are 
correct and in agreement with other work.   
We have also demonstrated how the term “dipole approximation” may be ambiguous and 
may involve different levels of approximation. 
 
 
 

4.c.3.  The cross terms. 
 
Cross-terms in the cross-section are those terms containing a “cross density of states”, 
that is, a factor *

' '
f f

lm l md d  for which either 'l l≠  or 'm m≠ .  They are often neglected in 
published formulae.  This is valid if the crystal under investigation is of sufficiently high 
symmetry, and/or if the DOS is defined in a coordinate frame that coincides with the axes 
of symmetry. 
Let us investigate when the cross terms will disappear.  Nelhiebel31 describes this, but 
works ‘backwards’ : terms ‘must’ disappear.  Let us work ‘forwards’.  The procedure can 
be as follows.  The point group of a site does not give the symmetry of the wave function, 
but it does give that of the potential and the charge density.  The charge density is the 
square modulus of the wave function, which can be expanded in spherical harmonics (see 
Eq. (4.3.13)).  Thus we get an expression featuring our *

' '
f f

lm l md d , which will in this section 
be abbreviated as LM

lmD  coefficients.  Now the application of a symmetry operation on the 
spatial coordinate has to be expressed in spherical coordinates, and then one has to work 
out how this transforms the spherical harmonics.  In order for this symmetry 
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transformation to leave the charge density invariant, the D coefficients will have to obey 
certain rules.  We list a few simple examples : 
 

symmetry coord transf Ylm transformation properties of D remarks 
mx φ −> π - φ Ylm(θ,π−φ)=Yl-m(θ,φ) Dlm

LM = Dl-m
L-M Dlm

L-m is real 
my φ −> −φ Ylm(θ,−φ)=(-1)mYl-m(θ,φ) Dlm

LM = (-1)m-MDl-m
L-M  

mz θ −> π − θ Ylm(π−θ,φ)=(-1)l-

mYlm(θ,φ) 
Dlm

LM = (-1)m-M+l-LDlm
L-

M 
l-L+m-M even 

C2 || z φ −> π + φ Ylm(θ,π+φ)=(-1)m 
Ylm(θ,φ) 

Dlm
LM = (-1)m-MDlm

LM m-M must be even 

C3 || z φ −> ⅔ π + φ Ylm(θ,π+φ)=i4m/3 Ylm(θ,φ) Dlm
LM = i4/3(m-M)Dlm

LM (m-M)/3 integer 
C4 ||z φ −> ½ π + φ Ylm(θ,π+φ)=im Ylm(θ,φ) Dlm

LM = im-MDlm
LM (m-M)/4 integer 

C6 || z φ −> 1/6 π + 
φ 

Ylm(θ,π+φ)=i2m/3 Ylm(θ,φ) Dlm
LM = i2/3(m-M)Dlm

LM (m-M)/6 integer 

inversion θ −> π − θ 
φ −> π + φ 

? = C2 || z   +   mz m-M must be even l+L must be even 

 
Any D symbol not meeting the requirement in the last column of the table (except for the 
first line – this is a property, not a requirement) is zero. 
We see that  e.g. C4 ||z will kill all cross terms in (4.3.27). 
Diamond is of such high symmetry that its cross-terms cancel in any coordinate frame.   
Generally speaking, this is true for all crystals with orthorhombic or higher symmetry.31 
Graphite, however, has lower symmetry.  Its cross-terms are zero if the coordinate frame 
is chosen correctly (z-axis defining the spherical harmonics is perpendicular to the 
graphene sheets), but they give an important contribution if the axes are chosen 
differently. 
  
 
 

4.c.4.  The monopole term. 
 
The monopole term contains the transitions of order 0 in the interaction potential, or 
equivalently, the transitions for which il l= .  Its only contribution is similar to that in 
non-relativistic theory, except for the Coulombic prefactor : 
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for a K-edge where u1s is the radial part of the core state wave function, and ul=0 is the 
radial part of the final state of s-character (replace the u – functions by their appropriate 
relatives for other edges).  In the small q limit, this reduces to 
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Just like in the dipole transition, the monopole DFF M works as if the impulse transfer 
were shortened – but in the most trivial way : by simply not depending on it. 
The monopole usually doesn’t contribute to the spectrum.  This is unrelated to the 
impulse transfer being small or not, but is entirely due to the small overlap of the wave 
functions in (4.3.37). 
 
 

4.c.5.  The quadrupole terms. 
We define the quadrupole terms q as those for which 2il l= ± .  We calculate its direct 
terms qlm for the K edge.  
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22 220

154 sin
8

q jπ θ−=  (4.3.38) 

 2 2 22q q− =  (4.3.39) 

 ( ) ( )
2 22 (0)

21 220 120 120
sin4 15 cos 3/ 5 ' 3 ''

2
q j j jθπ θ ε− ⎡ ⎤= + +⎣ ⎦  (4.3.40) 

 2 1 21q q− =  (4.3.41) 

 ( ) ( ) ( ) 22 2
20 220 120 1204 5 4 3cos 1 cos 4 5 ' 36 5 ''q j j jπ θ ε θ− ⎡ ⎤= − + +⎣ ⎦  (4.3.42) 

which gives for the total direct quadrupole cross section 
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where 0
2

e

v
m c

ε =
= .   It is now worthwhile to evaluate this expression in the small q limit 

and see whether we again find a non-relativistic DFF formula with relativistically 
shortened q-vector. 
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As an additional approximation, j120’’ may be assumed zero due to orthogonality of initial 
and final states.  We get 
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It is now obvious from the different behavior of the two terms involving cos θ that there 
is no simple geometrical interpretation of the relativistic changes to the quadrupole term. 
 
The last open question is how the l=2,m≠m’  cross terms behave.  We derive 
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In particular, 
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Additionally, there are cross terms for which m or m’ equals 1. 
 
 
Quadrupole terms are generally very small.  They contribute only in “extraordinary” 
circumstances, such as 

• very high scattering angles  
• pre-peak signals (in the “dipole band gap”)30,97 
• due to diffraction effects35 
• in certain materials98,99 

 
Also, it’s possible that the relativistic formalism has stronger quadrupole signals in some 
situations.  This requires further investigation. 
 
The angular momentum expansion (4.3.20) doesn’t stop at second order – but this 
manuscript does.  Octopole and higher orders can be treated analogously to cases already 
discussed. 
 
 

4.d. Implementation in the WIEN2k program TELNES2 
 
The WIEN2k program7 is a benchmark ab initio band structure code based on the L/APW 
formalism49 within the Density Functional Theory framework56.  It calculates the 
electronic structure of the ground state of a periodic system self-consistently in reciprocal 
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space by constructing and diagonalizing its Kohn-Sham Hamiltonian.  It works with a 
L/APW basis set briefly described below. 
I have developed a program (TELNES270) that calculates ELNES spectra from 
WIEN2k’s Kohn-Sham electronic structure.  The double differential ELNES cross 
section is calculated by evaluation of Eq. (4.3.19)-(4.3.20). 
Two further points merit discussion.  The first concerns the basis set used in WIEN2k and 
how to generate from it the angular expansion coefficients for the final states.  The 
second addresses the integration of the double differential cross section over impulse 
transfer (or, equivalently, scattering angle) to obtain the differential cross section which is 
measured in experiment. 
 
 

4.d.1. The L/APW basis set and the l,m-decomposition 
 
Although a detailed description of the ab initio DFT band structure code WIEN2k would 
be out of place in this dissertation, and indeed redundant as it is readily available 
elsewhere,66 we must briefly remark on the basis set used to describe wave functions of a 
crystal. 
Space is divided into two regions : a set of non-overlapping spheres (S) centred around 
each atom in the crystal, and the remaining interstitial space (I) (Figure 4-3). 
 
 

Atomic Sphere

Interstitial Region

ρ(r), V(r) : lattice harmonics
φ(r) : atomic-like expansion
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Figure 4-3 Space is divided into atomic spheres and an interstitial region, each with its own basis set for 
the wave functions and the electron density and potential.49 

In the interstitial region, electrons are assumed to be delocalized and free-electron like, 
and their wave function is expanded in plane waves.  Within the atomic spheres, the 
electron wave function is assumed to be more atomic-like, and it is expanded in a local 
basis : 
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where the function u is given by  



 71

 ² ( 1) '( ) ( ) ( )
² ² l l l

d l l V r E r u r ru r
dr r

+⎧ ⎫− + + − =⎨ ⎬
⎩ ⎭

 (4.4.2) 

where V is the Kohn-Sham potential of the crystal.  u’ is the derivative with respect to 
energy of u, which allows a small basis set of u-functions calculated at a small number of 
“linearization energies” El (usually taken at energies close to the middle of a band) to be 
linearized to make the basis applicable to a sufficiently large energy range to describe all 
relevant electron states.49  To allow for even more flexibility and to describe semicore 
states, so-called Local Orbitals are added to the basis : 
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or 
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These notations must be less than clear to the reader ; he is referred to more specialized 
texts66 for a better description of the WIEN2k L/APW+LO/lo basis set.  The point we 
make in this section is simple enough that more detailed description does not seem 
warranted. 
 
An alternative basis set, called APW, is 
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This is simpler, but because no energy linearization is used, nor any local orbitals, it is 
necessary to have a basis function u for every eigenenergy, leading to a large basis set 
which is not practical for SCF calculations.49 
 
 
We will now assume that, due to the strong localization of the initial state wave function, 
a description of the final state is only needed within the atomic spheres, and the 
interstitial plane wave expansion can be ignored from now on, as the initial state does not 
extend into the interstitial region.  WIEN2k calculations check that this is the case and 
protest if the initial core state is not fully (say, 99.99%) confined within the atomic 
sphere.  (It is possible to perform the calculation anyway – and sometimes strange, 
unphysical results will follow.)  For all but the most shallow core edges this will never 
pose any real problems. 
 
It is very convenient to write the double differential cross section in such a way that it is 
separated into a matrix element (M) and a local partial density of states (DOS) : 

 ² ( ) ( )l l
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d E M E
d dE
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This is essentially the way we have developed our EELS formalism until now.  However, 
it is not possible in every theoretical framework. 
Let’s look again at the basic expression for the cross section in the first Born, single 
scattering, independent particle approximation for an incoming plane wave : 
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² ( )if
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d i V f E E
d dE

σ α δ= −
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Now we expand the final state wave function 
 ( ) ( )
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This expression is valid for APW and LAPW basis sets within the atomic sphere.  The 
ket |lm> denotes a spherical harmonic, the ket |al > denotes a radial basis function.  For 
APW, there is just one; for LAPW, there are at least two, and often three. 
I repeat the definition of the local partial density of states : 
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This definition is easily generalized to cross-DOS (lm ≠ LM). 
Combining (4.4.8) and (4.4.7) yields 
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Only if the summation over a,A disappears (APW basis set) it is possible to decompose 
the spectrum into l,m-terms of matrix element times partial density of states. 
For APW : 
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If there are no cross terms : 
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If we consider only one initial state “lc” and if the (dipole) selection rules only allow for a 
transition to lc+1, and if we integrate over the orientation of the beam with respect to the 
crystal, then (4.4.13) simplifies even further : 
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For the LAPW basis set, which WIEN2k uses to construct and diagonalize the 
Hamiltonian of the crystal and find its electronic structure, it is not possible to 
write(4.4.12).  The only solution is to perform a basis transformation from the L/APW to 
the APW basis : 
 1 2 2( ) ( ) ( ) ( )( ) ( ) ( ) ( )

' ' ' ' ' ' ' ' ' ' ' '( ) ( ) ( ) ( )E E E E
l m l l m l l m l l m ld u r A u r B u r C u rνν ν ν ν′= + +kk k k k  (4.4.15) 

As (4.4.15) does not guarantee that dl’m’ is independent of r, it is made so by averaging 
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This averaging procedure in principle introduces inaccuracies in the dl’m’-coefficients, but 
in practice these turn out to be insignificant. 
 
 
 

4.d.2. Integrating the cross-section over beam 
convergence and detector aperture. 

 
So far, we have concerned ourselves with the double differential scattering cross-section 
(DDSCS), which describes scattering of a plane wave (fast beam electron) k into a plane 
wave k’ by interaction with the crystal.  It gives the probability of capturing an electron 
that has lost an energy [E,E+dE] and is scattered into a solid angle [Ω,Ω+dΩ].  The 
DDSCS is directly related to the Dynamic Form Factor DFF. 
Let us introduce a more compact notation for the DDSCS : 
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dd is determined by the properties of the crystal and the setup of the experiment. 
  
In an EELS-experiment, we resolve the spectrum with respect to k’ : we measure 
intensity as a function of the energy of the outcoming electron (E’ ≡ k’) and of its 
position in the two-dimensional plane of the detector, corresponding to the angle of exit 
(dΩ’ ≡ (dθ’,dφ’)).  We do not distinguish between electrons with different incoming 
wave vector.  So, what we really measure is an intensity: 

 ( ) ( , ) ( )I dd f dα= ∫k' k k' k k  (4.4.18) 

where fα describes the beam that hits the sample, characterized by a parameter α.  We 
sum incoherently over incoming wave vector.  In reality, the beam has coherence, and 
this is not correct ; however, we do not treat coherence in this text. 
A popular expression for the profile of the incoming beam is the simple circular envelope 

 02( ) ( ) ( ) ; ( ) 0 1If k k x unless xα
θ δ

πα α
0= Θ − Θ = ≤k  (4.4.19) 

which is monochromatic, centered around θ = 0,  and has a total intensity of I0.  In this 
case, the parameter α is readily identified as the convergence semi-angle of the 
microscope (Figure 3-8).  Of course, in reality beams will always have some distortions 
from this perfect profile. 
 
Now we approximate the DDSCS dd by imposing that it depends only on the scattering 
vector q and not on k and k’ separately in the context of evaluating the integral.  That is, 
it depends on the sample to beam orientation on a scale of degrees, but it doesn’t depend 
on the orientation on the scale of mrad on which we are integrating. 
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 (4.4.20) 

This is in a trivial way not correct : it is the DFF that depends only on q; dd contains a 
prefactor k’/k.  Apart from this, we can motivate our approximation by remarking that the 
scattering angles in EELS are of the order of millirad, and that a tilt of the crystal with 
respect to the beam of a few millirad does not alter the scattering process : the (M)DFF is 
invariant to such a small tilt – unless one works in or near zone axis conditions.  In the 
latter case, channeling/diffraction effects must be taken into account when calculating the 
cross section, and the precise orientation of the crystal is crucial.  However, we here 
assume that we are not working in zone axis conditions, and there are no diffraction 
effects.  Then only the difference in wave vectors matters, not their very precise 
orientation.  We may now write 

 ( ) ( ) ( )I dd f dα= −∫k' k k' k k  (4.4.21) 

Usually we do not use the intensity I of just one pixel of the detector, but we integrate 
over the signal collected in the detector.  This integral turns the double differential cross 
section into a differential cross section, with the energy loss the only remaining variable.  
(In reality, one integrates over a certain energy window as well, determined by the energy 
resolution of the experiment.)  This may be expressed by 

 ( ') ' ( ) ( ) ( ) ( ) ' ( ) ( ', )d k d dd f d d dd f d d dd g kαβ
α αβ β

= Ω = + Ω =∫ ∫ ∫ ∫ ∫q k k q q k' q q q q (4.4.22) 

where the weight function g is defined by the last equality of (4.4.22).  We assume that 
the aperture of the detector can be characterized by a parameter β, the collection semi-
angle (Figure 3-8). 
In practice, we will approximate the integral over the impulse transfer by a sum over a 
finite number of values for which we calculate the DDSCS : 
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wi is a weight originating in the approximation of the integral over q by a sum and 
depends only on the choice of sampling.  If the mesh of  nq q-vectors is chosen uniformly, 
it is 
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Using (4.4.19) for fα yields 
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To avoid confusion over the notations used, we list explicitly the components of all 
vectors used : 
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The integral in (4.4.25) must be performed over a solid angle of radius β around a central 
spot (θ0,φ0)1.  For a spectrum recorded in the usual forward direction, the central spot 
corresponds to the 000-spot and is characterized by θ0= 0.  We assume θ0= 0 in the rest of 
this paragraph, as other scenarios are easy enough to understand but complicate notations. 
 
Equation (4.4.25) is an integral of a constant function, so it is the area of a surface 
defined by two conditions on Ω’.  One is expressed by fα and the other by the boundaries 
of the integral (β).  Symbolically we can write 
 ' ' ( )andβ α αΩ ∈Ω Ω ∈Ω ≡ Ω ∈ Ω −

iq +k' iq  (4.4.27) 

 0
2( ', ) ( )i
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β απα

= Ω ∩ Ω − iq q  (4.4.28) 

The weight of vector qi is the overlap of two solid angles with a different radius, one of 
which is shifted by the transverse component of the impulse transfer vector (i.e., qi 
projected onto the detector plane), and the other one by a vector defined by (θ0,φ0).   
More realistic functions for fα will not lead to such a clear interpretation of the weight 
coefficients gαβ. 
 
I now give explicit expressions for the overlap of two circles, which is of course nothing 
but elementary geometry.  We calculate the overlap of two circles, one with radius α and 
the other with radius β.  The center of the second sphere is at position (θ,0) in a Cartesian 
frame (the first circle has center (0,0)).  For sufficiently small values of θ the circles cross 
at two points with x-coordinate 
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The area of overlap now consists of two segments, one defined by an arc of radius α on 
the interval [p,α] and another arc of radius β on the interval [θ -β,p].  These can be 
integrated, and one obtains the overlap area as : 
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If we include the prefactor I0/πα², it becomes clear that, contrary to what is sometimes 
believed, collection and convergence angle are not equivalent.  This is readily illustrated 
by looking at the case of forward scattering 
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1 Relative to the center of the incoming beam, which we chose earlier to have θ = 0. 
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For a given collection angle, increasing the convergence angle from zero will not change 
the intensity up to a given value, when the intensity will start to decrease quadratically.  
This can be understood by considering a simple function for S(Q) and smearing it out by 
convolution with fα.  For large values of α, intensity will be transferred to angles outside 
of the detector aperture. 
Given the assumptions we’ve made here, exchanging α and β only multiplies the total 
differential cross section by a constant factor (i.e.,. independent of energy loss). 
 
 
WIEN2k. 
Eqs. (4.4.22) - (4.4.25), (4.4.30) are used in the TELNES2 program of the WIEN2k code.  
As an alternative to Eq. (4.4.24), one also has the option of using an exponential grid for 
sampling q instead of a uniform grid.  This can be useful when the collection and 
convergence angles are large and one wants best accuracy at small scattering angles, 
where the transition probability is largest.  Additionally, a one-dimensional line grid can 
be chosen.  This is obviously of no use for calculating the differential cross-section, but is 
meant for studying the angular behaviour of the double differential cross section. 
 
Finally, it is also possible to integrate over energy loss, and output a differential cross 
section which is differential with respect to scattering angle instead of energy loss.  This 
can be useful when comparing to experiments with large energy windows. 
 
 

4.d.3. Broadening the spectrum. 
 
Experimental spectra are never perfectly sharp functions of energy loss, and in order to 
compare theoretical calculations to experimental data, the calculated spectra need to be 
broadened.  This is done by convolution with a broadening function.  Usually, three 
different broadening steps are distinguished84  : 
* Lorentzian broadening due to the initial state lifetime. 
* Lorentzian broadening due to the final state lifetime. 
* Gaussian broadening to account for “experimental broadening” 
 
The width of the initial state is taken from atomic tables.85  When calculating edges such 
as L23 (corresponding to initial p1/2 and p3/2 states), it can be significantly different for its 
L2 and L3 component. 
 
The width of the final states is not well known, and is impossible to calculate in an 
independent-particle DFT code.  It is known to be energy dependent.  In 
TELNES2/WIEN2k, one has several options : constant width, width linear with energy 
loss above threshold, width quadratic with energy loss, or a somewhat more sophisticated 
approach recently published by Moreau100.  The first three options are described in more 
detail in Hébert10. 
 



 77

The “experimental broadening” is a vague term that can be used to represent such things 
as the energy resolution of the electron beam and the spectrometer, thermal effects, …  
The width of the measured Zero Loss Peak (ZLP) is often used as an estimate for the 
width of the Gaussian broadening function, but it is equally common to simply choose 
the broadening that matches the experimental spectrum best. 
 
 
 

4.e. Implementation in the FEFF program 
 
So far, we have developed a clear and intuitive picture of EELS in this chapter.  The 
spectrum is calculated ab initio by summing transitions between initial and final states.  
While the description of the scattering mechanism seems unambiguous enough, it is also 
obvious that the quality of the results heavily depends on one’s ability to calculate 
accurate initial and final states.  As nobody can solve the many-body problem exactly for 
any system of practical interest, approximations will compromise the accuracy of ab 
initio calculations.  This motivates our goal to have more than one method to calculate 
EELS.  The WIEN2k program7, based on the ground state theory of DFT, was never 
really designed to provide accurate unoccupied (final) states for EELS. 
 
FEFF8 is a different ab initio code, based on the Green’s function method outlined in 
Chapter 3.d.1.  It is sufficiently different from WIEN2k that it is a valuable alternative.  
We refer to Chapter 3.d.2 for more details. 
FEFF has been used extensively in the X-ray Absorption Spectroscopy (XAS) 
community, where it is routinely applied to the interpretation of experimental XANES 
and EXAFS measurements.  Because XAS and EELS are formally identical in the non-
relativistic dipole approximation (apart from a prefactor, and identifying the impulse 
transfer in EELS with the polarization vector in XAS – see Sec. 3.b.2), FEFF-XAS has 
also been applied to EELS research.  An extensive overview of how to use FEFF-XAS 
for EELS with applications to GaN ELNES has been published in Moreno et al.9 and 
discussed in Sec. 3.d.2. 
 
However, we have now firmly established that the relativistic nature of EELS makes it 
different from XAS, even in the dipole approximation.  Additionally, variables such as 
the collection and convergence angle of the microscope really influence the fine structure 
of the spectrum.  These variables were not accounted for in FEFF-XAS, and although it is 
possible to compensate for this by hand, mistakes were undoubtedly made.  To remedy 
these problems, we have developed a new code, FEFF8.5 or FEFF-EELS,75 which 
incorporates all the advantages of the older FEFF8.4 or FEFF-XAS (including the use of 
advanced cards such as TDLDA in the calculations80 which account for corrections to the 
independent electron approximation ; the use of Debye-Waller factors to approximately 
account for temperature effects ; etc.), but features dramatic improvements for the ab 
initio calculation of EELS.  From now on, we will refer to FEFF-EELS simply as FEFF.  
The novelty of the new code consists of the shortened q-vector relativistic formalism of 
Sec. 4.b in terms of a cross-section tensor as outlined in this Section below, and the 
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treatment of the impulse transfer and collection or convergence angle as described in Sec. 
4.d.2 .  More technical information on FEFF(-EELS) can be found in the Appendix (App. 
8.d). 
 
 
FEFF calculates the relativistic dipole EELS spectrum using the shortened q-vector 
formalism as described in Section 3b and Schattschneider et al.5  We will recast that 
formalism in terms of a cross section tensor (CST).75 
The cross section is calculated as 
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the product of the Thompson cross-section and the Dynamic Form Factor S : 
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The impulse transfer vector is relativistically contracted in the direction of propagation : 
 2

0; ; /zq v cβ β= − = − =zq' q e q k k'  (4.5.4) 
where v0 is the beam velocity. 
This equation is very similar to the description of XAS in the dipole limit, with the 
impulse transfer q playing the role of the polarization vector ε in x-ray scattering matrix 
elements.  However, for relativistic EELS there is an extra q-dependent contribution 
along  the direction of propagation ez. 
In general the DDCS can always be separated into a probe-dependent part containing the 
q-dependence, and a sample-dependent part which is independent of q. Since the theory 
is bi-linear in q the sample-dependent term transforms as a tensor, i.e., 
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The cross-section tensor σij (CST) can therefore describe all possible transitions of the 
sample.  However, experimental conditions determine which impulse transfers occur and 
therefore the weight of each component of the cross-section tensor that contributes to the 
total cross section.  This can be illustrated clearly by considering the sample to beam 
orientation of an EELS experiment.  Rotation of the sample is equivalent to a rotation of 
q, thus changing the weights of the σij components in Eq.(4.5.5). 
The relativistic character of the formalism is also obvious: the field of the beam electron 
contracts in its propagation direction, resulting in the evaluation of (4.5.5) using a 
contracted impulse transfer vector as in Eq.(4.5.4), denoted by a prime. 
 
Formally the CST is a symmetric tensor with at most six independent components.  As 
such, it can always be diagonalized.  However, only in symmetric materials, where its 
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principal axes are given by the physical symmetry of the crystal itself, is a priori 
knowledge of the diagonal representation available, and will one set of coordinates 
diagonalize the tensor for all energies.    In the general case of a low symmetry sample, or 
in a situation where a non-symmetric coordinate system is desirable, the cross terms 
i j≠ in Eq.(4.5.5)  are important contributions to the cross section which cannot be 
neglected.  We give an example of this below. 
 
First, we point out a valuable advantage of explicitly separating probe and sample 
information in the calculation.  Recalculating the spectrum for different experimental 
conditions is extremely fast.  Once the CST has been stored, a fraction of a second 
suffices to obtain the spectrum for given sample to beam orientation, collection angle, or 
convergence angle.  This is clearly illustrated by writing (4.4.22) in CST formulation : 
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As the CST depends only on the sample, only integrals of functions of q need to be 
calculated.  These integrals are approximated by a sum over a finite set of impulse 
transfer vectors q.  This has already been discussed in Section 4.d.2.  
 
The calculation of the cross section tensor for EELS is done in real space, analogous to 
the case of XAS calculations2.  For the near edge region (ELNES or XANES), the Full 
Multiple Scattering technique (FMS) is used, in which all scattering paths within a sphere 
of limited radius are summed implicitly by matrix inversion.   For the extended region 
(EXELFS or EXAFS), the path expansion approach is taken, in which the scattering from 
a selected number of paths of limited length is summed explicitly.  This is done for each 
of the six independent components of the sigma tensor. 
Combining the ELNES and EXELFS calculations, one can calculate spectra over 
hundreds of eV, far beyond the limitations of most band-structure codes.  
 
Experimental parameters included in our calculations are : the microscope’s collection 
and convergence semi-angle, the electron beam energy, the sample to beam orientation, 
and the position of the EELS detector in the scattering plane.  FEFF8 calculations always 
include core hole broadening ; additional broadening can easily be included. 
 
 
We illustrate the concept of the CST on the C K edge ELNES of graphite, which has its 
threshold at ca. 285 eV.  We also show that its diagonal components are generally not 
sufficient to calculate the EELS spectrum.  
Therefore, we show the different components of the cross section tensor calculated in two 
different coordinate systems.  System 1 is symmetrical : its z-axis is perpendicular to the 
graphene sheets of the sample, x and y are in-plane.  System 2 is non-symmetrical : it is 

                                                 
2 Additional information is available in the FEFF documentation, at 
http://leonardo.phys.washington.edu/feff/ . 
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obtained from system 1 by a rotation of 35° around the x-axis of system 1.  We work in a 
Cartesian representation and refer to the components i,j of σ as x,y,z. 
 
In Figure 4-4, we see that in symmetric coordinates the σzz spectrum contains the so-
called π-transitions, corresponding to transitions into final states formed by the graphite π 
states, with a strong peak at ca. 285 eV.  The σxx and σyy are identical and contain the σ-
transitions, corresponding to the final states of σ character.  Their threshold is higher than 
the π threshold, at ca. 289 eV.  All off-diagonal components are zero (which can be 
explained by symmetry, i.e., equivalence of x and -x, y and -y, and z and -z). 
 
Figure 4-5 shows that in the rotated system, σxx is equal to that in the symmetric frame, 
but σyy and σzz have mixed and are of mixed π, σ - character.  
Additionally, the decrease in symmetry allows y,z cross terms to exist.  
(The x, -x symmetry has been preserved, suppressing xz, zx, xy and yx components.  A 
more general rotation of the coordinates would make all off-diagonal elements nonzero.) 
 
Finally, Figure 4-6 shows the resulting ELNES spectrum.  In system 1, calculation of the 
direct components of σ is sufficient.  To calculate the same spectrum in system 2, 
however, the off diagonal components (yz and zy in this example) make a very important 
contribution. 
 

 
Figure 4-4 Components of the CST of graphite in symmetric coordinates.75 

Graphite symmetric frame – ELNES σ tensor

Energy loss in eV 
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Figure 4-5 Components of the CST of graphite in nonsymmetric coordinates, tilted 35° around the 
symmetric x-axis.75 

 

 
Figure 4-6  C K edge of graphite calculated in coordinate systems 1 and 2 (see text).  The beam is 
perpendicular to the graphene sheets, the beam energy is 300 keV, α = 10 mrad, β = 0 mrad.75 

 
 
 

Energy loss in eV 

Energy loss in eV 

Graphite rotated frame – ELNES σ tensor

Graphite C K edge 
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4.f. Understanding and solving the magic angle fiasco 
 
 
The magic angle is a special value of the collection semi-angle (the aperture of the EELS 
detector, see Figure 3-8 and Sec. 4.d.2) for which the spectrum does not depend on the 
sample to beam orientation.  This may sound rather exotic, but the magic angle is an 
interesting quantity for at least two reasons : 
* It allows one to avoid the complication of orientation dependence from measurements 
of an anisotropic sample, greatly simplifying interpretation. 
* It is a quantity that is independent of any material properties, but is fully determined by 
the fundamentals of the inelastic scattering process.  As such, it provides great insight 
into scattering fundamentals, and makes an excellent test for scattering calculations, as 
one cannot hide behind the usual deficiencies in the description of excited electron states. 
 
In fact, the magic angle depends only on the beam energy, the energy loss, and the 
convergence semi-angle. 
 
In this chapter, we explore several questions : 
* What is the classic, non-relativistic treatment of the magic angle? (Sec. 4.f.1) 
* How do experiments compare? (Sec. 4.f.2) 
* What improvements can be considered within the non-relativistic theory? (Sec. 4.f.3) 
* What is the relativistic treatment of the magic angle? (Sec. 4.f.4) 
* Can TELNES2 and FEFF reproduce the correct magic angle? (Sec. 4.f.5) 
 
As a system of interest, we choose again the carbon K edge of graphite, perhaps the most 
well known anisotropic system.  We will work at a convergence angle α of 0 mrad.  It is 
trivial to generalize this to nonzero values in computer calculations, but complicates the 
algebra tremendously, providing very little illumination in return. 
 
 

4.f.1.  Non-relativistic calculation of the magic angle. 
 
 
We work at zero convergence angle (i.e., parallel illumination).  We use the formalism 
described by Nelhiebel et al.34  Within the dipole selection rule, the double differential 
cross section of a K edge is given by 
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d k q Y Y j q dos E
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+

− −

=−

= − Ω Ω
Ω ∑q  (4.6.1) 

where γ is the relativistic factor, a0 the Bohr radius, Ylm the spherical harmonics, jl the 
spherical Bessel functions of the first kind, the notation between brackets the matrix 
element between initial and (part of the) final state, dos the generalized partial density of 
states (dependent on the sample to beam orientation), (q,Ω) the coordinates of q, and 
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(k’,Ω′) and (k,Ωk) the coordinates of k’ and k in the laboratory frame.  q is the impulse 
transfer, and <j1> the matrix element.  For the sake of clarity, we ignore cross-terms in 
the DOS.  This approximation does not affect our results in any substantial way.  This 
reduces (4.6.1) to 
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where dos is now the regular partial density of states.  Now assuming the matrix element 
to be linear in q (i.e., approximating j1 by a linear function), and writing the spherical 
harmonics explicitly, we get 
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We follow the convention where the spherical harmonics are normalized.  We now 
choose the z-axis of our coordinate system parallel to the incoming beam, that is, Ωk = 
(0,0).  By definition q = k – k’, and therefore 
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In practise, the signal is integrated over the detector plane to yield a total cross section 
I(E) : 
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The notations σ (sum of 11 and 1-1 component) and π (10 component) simply refer to a 
decomposition of the density of states in spherical harmonics in the laboratory frame ; 
they do not coincide with our intuitive understanding of these terms, as the graphite 
crystal may be tilted relative to the lab frame.  Both the D functions and q itself depend 
on the energy E. 
As all angles are small (~mrad), we can make approximations : 
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In our setup, the scattering angle θsc is equal to θ’.  The characteristic scattering angle θE 
is defined as 
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The approximation in the last term of (4.6.7) is not very accurate and is in general 
undesirable.  For the experiment we will describe later, E=300 keV and ΔE=295 eV, 
 ( )0.5 ( ) ; 0.6E Emrad nonrelativistic mrad relativisticθ θ= =  (4.6.8) 
However, making the approximation (4.6.6) implies that we are actually using the value 
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So, we have implicitly resigned to the non-relativistic approximation for the characteristic 
angle.  This is important, as we will obtain a result for the magic angle in units of the 
characteristic angle, and we need to be able to convert it to hard numbers.  Near the 
threshold of the C K edge at 300 keV beam energy, z≈1.0005. 
 
Now let us specify the crystal to beam orientation by the parameter γ and add it as a label 
to the partial DOS. 
Equation (4.6.5) now becomes 
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β

β σ πε θ θ θ θ γ θ γ θ−= + + −∫  (4.6.10) 

We calculate two integrals 
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and therefore 
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Finally, we must have a closer look at the orientation dependence of the experiment by 
introducing a set of Euler angles γ=(γ1,γ2,γ3) giving the transformation between two 
Cartesian frames, one related to the laboratory coordinate system, the other related to the 
crystal coordinate system.  The partial DOS in the crystal frame has a natural and 
intuitive meaning in that π and σ mean what they usually mean. 
The spherical harmonics of first order (l = 1) transform as follows : 
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where the left hand array is the crystal frame, and the right hand array is the lab frame.  
The coefficients of an expansion into spherical harmonics transform the opposite way 
(i.e., using the inverse of the matrix in (4.6.13)), and the partial DOS is a product of two 
such coefficients.  Therefore, the direct DOS-terms transform as 
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We remark that graphite has sufficiently high enough symmetry that the cross-terms 
would cancel in the crystal frame, simplifying (4.6.14).  Cross-terms in the lab frame, 
which we have not calculated here, would definitely be non-zero for graphite. 
We also remark that the first and third Euler angle simply add phase factors to the cross 
terms.   
 
At last, we can complete equation (4.6.12) : 
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At the magic angle β*, the spectrum I(E) should be independent of the orientation of the 
sample, that is, independent of γ.  Eq. (4.6.15) shows how to achieve this.  We demand 
 β βσ π=  (4.6.16) 
Using (4.6.12) and approximating k = k’ (the energy loss is much smaller than the beam 
energy), we quickly find 
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 (4.6.17) 

This equation has exactly one solution at x approximately equal to 3.975.  At this 
solution, for a 300 keV beam and 295 eV energy loss, (4.6.15) reduces to 
 ( ) 2

* ( ) 2 1.887I E D D kβ π σ= +  (4.6.18) 
 
Remark that the magic angle does not depend on any material property.  It is fully 
defined by the energy of the probe and the energy loss. 
 
In reality, we never measure the ELNES signal of one atom, but the integrated intensity 
from a lot of atoms, e.g. in a crystal.  This total measured signal is simply the sum of 
every atom’s individual ELNES spectrum.  These spectra differ in the partial DOS – 
either because atoms are intrinsically different (e.g., different element, or (as in graphite) 
inequivalent atoms of the same species), or because they are oriented differently with 
respect to the electron beam.  Nevertheless, every one of them is orientation insensitive at 
the magic angle condition (4.6.16) and therefore the sum of their spectra is also.  In the 
case of graphite, the measured signal will consist of four terms like (4.6.18) which are 
equal two by two. 
 
 
The theoretical ”x=4” result of this chapter has been published by several 
authors32,101,102.  (Note : the last reference contains a trivial mistake in the derivation, 
which corrects the reported x=1.36 to the x=4 found above.) 
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4.f.2. Experimental measurements of the magic angle. 
 
Experimental measurements tend to disagree with the theoretical prediction x = 4, and the 
discrepancies are far from subtle.  Daniels et al.103 measured a magic angle for BN, 
graphite and MgB2 at 200 keV beam energy and found it to be close to x = 2.1.   (In the 
same paper, they present a non-relativistic theoretical derivation arriving at the same 
result, but it is nonsensical and should be ignored.) 
 
For the C K edge, Hébert measured a magic angle of x = 1.46 at 200 keV beam energy, 
and a magic angle of x = 2.04 at 120 keV beam energy.104 
 
 
We present experimental results by Radtke et al.105 for the magic angle of graphite at 300 
keV beam energy.   Experiments are performed on a Jeol 3000F operating at 300kV with 
a GIF 2000 EELS spectrometer operating in diffraction mode. The sample consists of a 
HOPG polycrystalline graphitic sample. Single crystalline grains are selected by the 
electron beam.  Almost parallel illumination was chosen (convergence angle < 0.2mrad) 
to avoid the combined effect of collection and convergence angle. 
 
The experiment consists of collecting the C-K ELNES for different collection angles and 
for zone axis and out of zone axis orientation. By definition the ELNES spectra for both 
orientations should be the same when the collection angle approaches the magic angle. 
 
Figure 4-7 presents the results of this experiment for zone axis orientation and for 
approximately 30° away from zone axis. The spectra are background removed and 
deconvoluted with the low loss spectrum to remove the effect of plural scattering.  Figure 
4-7 shows clearly the effect of orientation and collection angle on the fine structure 
details of the C-K edge. It also shows that there is a certain range of collection angles 
where the fine structure is almost independent on orientation.  
For this experiment, the magic angle is approached for  camera lengths close to 80 cm 
and a GIF entrance aperture of 3mm. This can be converted into a collection angle 
making use of a calibration table.  The magic angle is then found to be close to 0.68 
mrad. 
These results agree with the detailed experiments of Daniels et al.103 and Hébert104 in the 
sense that the magic angle is much smaller than the expected 4 θE. 
 
The weak point of this experiment lies in the fact that the results depend on calibration, 
which may be unreliable, and in the fact that we get very little information about the 
reason for the discrepancy between theory and experiment.  The same is true for the 
experiments by Daniels and Hébert referenced earlier. 
 
 
A second experiment is performed to investigate the details of the discrepancy between 
the theoretical and experimental magic angle.105 A series of energy filtered diffraction 
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patterns is recorded with a energy selecting slit of approximately 2 eV over an energy 
range covering the C K-edge in increments of 2eV. The obtained series of inelastic 
diffraction patterns allows a detailed study of the angular dependence of scattering of the 
different energy regions of the C K-edge. The series was background subtracted to obtain 
an approximation of the angular distribution of the C K-excitation without background.  
Figure 4-8 shows 4 selected diffraction patterns from the series. Figure 4-8A shows the 
angular distribution in the background preceding the C K-edge, Figure 4-8B shows the 
angular distribution of the π* feature in the background subtracted fine structure, Figure 
4-8C shows the angular distribution in the π*+σ* region and Figure 4-8D shows the 
distribution in a region of the tail of the edge. Fig 3 also shows the radial distribution 
around the centre of the patterns. The observed patterns fit qualitatively with the 
expectation that before the edge and far way from the onset of the edge, the pattern 
should be a simple Lorentzian while for the π* feature a more forward scattered 
distribution is expected and the π*+σ* region is expected to show a ring-like scattering 
pattern due to the presence of the σ* contribution. Simulations show that when the sample 
is tilted, the ring like pattern in the π*+σ* region becomes asymmetric in qualitative 
agreement with experiment. 
 
Analytical expressions for the scattering behaviour in the different regions can be 
obtained from dipole scattering theory for a single carbon atom.  These theoretical curves 
are also shown in Figure 4-8 and lead to the conclusion that there is a quantitative 
discrepancy between the experimental curves and the theoretical curves.105 If the 
calibration is chosen in a way that the Lorentzian profile agrees with observed profile 
before and after the edge, one sees that the observed π* feature is much more confined to 
smaller angles than expected from theory. The observed discrepancy is at least a factor of 
1.6. 
Multiple scattering could cause the Lorentzian parts to be broader than expected but the 
effect should be small since the angular distribution of e.g. a plasmon if very small. 
It seems that this experiment demonstrates a fundamental problem between the simple 
scattering theory and the experiment which could be of importance for simulation of 
EELS spectra in general. 
It is important to note that this last experiment can not be explained away by calibration 
problems unlike the first experiment, which is important since calibration problems 
would be a possible source of a discrepancy between experiment and theory in the 
determination of the magic angle. 
 
In conclusion of the experimental part, two observations are important: 

1. The observed magic angle in EELS is ~ 1 θE in contrast to the predicted 4 θE. 
2. The observed scattering angles in the π* feature of the C K-edge are considerably 

smaller than predicted. 
 
The second observation contains already a powerful hint towards the reason for this 
discrepancy since angular distributions are a more direct result of theory as compared to 
the magic angle.  
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Figure 4-7: C K-ELNES for zone axis conditions (full line) and tilted approx. 30 degrees away (dashed) 
for 13 different nominal camera lengths (12 cm – 250 cm). The magic angle occurs around 80 cm camera 
lenght which translates into a collection angle of  0.68 mrad which is close to 1 θE.  Radtke et al.105 
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Figure 4-8 Angular distribution of inelastic scattering at different energies in the carbon K edge of HOPG 
graphite, from Radtke et al.105 
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4.f.3.  Improvements within the non-relativistic theory? 
 
Of course, we have already discussed the importance of relativistic corrections to rectify 
the magic angle fiasco.  However, it is worthwhile reviewing a few approximations made 
in 4.f.1 and investigating their impact on the (non-relativistic) magic angle.  This way, we 
eliminate possible sources of errors in the theoretical prediction of the magic angle. 
 

4.f.3.1 Non-dipole contributions. 
 
The dipole selection rule is not a dogma.  It can be violated.   
 
Let us look first at monopole contributions.  To take these into account, an additional 
term must be inserted into (4.6.3) : 

 24
00 0 00

2 ( )
4

monopole term q dos j qε
π

−=  (4.6.19) 

where ε contains all unwritten prefactors.  Obviously, the s-DOS dos00 is rotation 
invariant, and therefore cannot contribute to the magic angle.  We can safely ignore term 
monopole contributions when it comes to the magic angle. 
 
Let us move on to quadrupole transitions.  They are absolutely negligible in numerical 
simulations of the C K edge.  To better understand the (un)importance of quadrupole 
transitions to the spectrum, we compare the matrix elements and final state DOS of 
quadrupole and dipole transitions in Figure 4-9. 
 

 
 

 

Figure 4-9 Matrix elements of the graphite C K edge as defined by the top integral in Eq. (4.3.26) (See also 
text).   Dipole matrix element in green, quadrupole matrix element in red, and quadrupole matrix element 
multiplied by a factor of 20 shown in blue. 

 

Impulse transfer in a.u.-1 
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It is important to realize that the matrix element shown here is simply the radial integral 
of the initial and final state wave functions and the spherical Bessel function (first 
integral of Eq. (4.3.26)).  It needs to be multiplied by the Coulombic prefactor of q-4 and 
the DOS in order to build the cross-section. 
Only for a very large aperture/collection angle will the quadrupole matrix element 
become comparable to the dipole matrix element.  If we assume α+β = 3 mrad at 300 
keV beam energy and 300 eV energy loss, q is about 0.3 au-1, and the quadrupole matrix 
element is at least 20 times smaller than the dipole matrix element.  The Coulombic 
prefactor q-4 makes the small q region, where the difference is even far larger, dominant 
in the cross section.  This leads to a total suppression of quadrupole signal in the cross-
section, unless one moves the detector away from the 000-spot.  Quadrupole transitions 
are of no importance for the study of the magic angle in graphite. 
 
In the π region, there is hardly any d-DOS (Figure 4-10).  The d-DOS (which 
corresponds to quadrupole transitions from the 1s core state) closely follows the s-DOS 
and can, in the σ region, be approximated very roughly as half the s-DOS. 
 

 
Figure 4-10 Local partial DOS of graphite : s-DOS (green), p-DOS (dark blue), d-DOS (pink), f-DOS 

(light blue) and total local DOS (red). 

 
 
If we still wanted to study quadrupole contributions, Eq. (4.6.2) can be generalized to 
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The terms we have investigated before correspond to l = 0 (monopole or s term) and l = 
1 (dipole or p term); l = 2 describes the quadrupole or d term transition.  Knowing that 
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as can be seen from a Taylor expansion of sin x and cos x, the factor q-4 cancels from 
(4.6.20) and the angular behaviour of the quadrupole term is determined uniquely by the 
spherical harmonics (in the range of q where the quadratic description is appropriate).  
Naming the quadrupole contribution Q, we find 

 
( ) ( )

( )

4 2 2
2 2 22 2 1 21

4 2
20

15 15sin sin cos
32 8

5 9cos 6cos 1
16

Q dos dos dos dos

dos

ε θ θ θ
π π

θ θ
π

− −
⎡= + + +⎢⎣

⎤+ − + ⎥⎦

q q q

q q

 (4.6.22) 

where, similarly to section 1, the D are defined in a frame fixed to the beam and not to 
the sample (in other words, they are orientation dependent), and θq is the coordinate of 
the scattering vector q, and not the scattering angle. 
Now one can proceed as we have done for the dipole terms – rotating the partial DOS and 
integrating the goniometric functions up to the collection angle β.  The algebra is tedious 
and not instructive.  It is quite clear from the results, which I will not show here, that the 
occurrence of significant quadrupole character in the spectrum would prohibit the 
existence of a magic angle.  There is no way of integrating the cross section over impulse 
transfer that would cancel out the more complex orientation dependence of the 
quadrupole terms.  If quadrupole terms contributed to the cross section at all, there most 
likely wouldn’t be a magic angle at any value of the collection semi-angle. 
 
 

4.f.3.2  Cross-terms. 
 
Cross terms corresponding to generalized cross DOS also contribute to the spectrum – 
indeed, (4.6.1) certainly allows them.  Cross terms are terms for which either l and l’ or µ 
and µ’ are different.  However, these terms will depend on the angle φ as 
 ( ')i µ µe φ−  (4.6.23) 
When calculating a differential cross-section, we integrate this factor over φ as in(4.6.5), 
so a condition for cross terms to contribute is 
 ' 0 'µ µ l l− = ≠  (4.6.24) 
(if the second condition were not fulfilled, the term would be direct).  If α > 0 and φ = φ’ 
no longer holds, this argument no longer strictly holds. 
In the case of graphite and parallel illumination, only the (l=0,µ=0,l’=1,µ’=0) cross term 
still has to be considered.  Investigating its angular behaviour, one can see that it would 
destroy the magic angle if it contributed significantly.  However, numerical simulations 
again show this cross-term to be negligible (less than 10-3 of the total spectrum) for the 
experiment we are investigating. 
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It is worth remembering that cross-terms may be bigger in other materials, and that their 
amplitude may depend on orientation. 
 
 
 

4.f.3.3  Beyond the small q approximation. 
 
In Sec. 4.f.1, we just assumed linearity in q of the matrix element containing the initial 
state and final state radial wave functions and the spherical Bessel function.  We repeat 
the definition of the matrix element : 

 2
10 0

( ) ( ) ( ) ( )E E
Sj q dr u r u r j rq rλ λ λλ

+∞
= ∫  (4.6.25) 

containing in the integral from left to right: the 1s radial wave function, the radial 
(valence) basis function of orbital quantum number λ of energy E above threshold (Sec. 
4.d.1), and the spherical Bessel function of order λ. 
In the figure below we show the matrix element for λ = 1 as a function of q (in au-1). 
 

 
 

Figure 4-11 Dipole matrix element (full line) of the graphite C K edge as a function of impulse transfer in 
a.u.-1, and a linear (dots) and a quadratic (dash) fit 

 
In Figure 4-11, the matrix element for 2 eV above threshold is fitted both to a linear and a 
quadratic function.  Up to about 0.8 au-1, the linear approximation holds rather well.  Up 
to 2 au-1, the quadratic fit is good.  The fitting coefficients depend on energy. 
 

Impulse transfer in a.u.-1 
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Repeating the calculations of Sec. 4.f.1 using a quadratic approximation for the matrix 
element : 
 1 01

( ) ²j q q aq+∼  (4.6.26) 
Eq. (4.6.10) is now replaced by 

 
( )( )

2 2 2 2 2 3/2 2 2 1

0

2 2 2 2 2

( ) ' ( ) 2 ( ) ² ²( )

( ) ' ' 2 ( ) ' ' '

E sc E sc E scI E ak a k

D k D q k d

β

β

σ π

ε θ θ θ θ θ θ θ

γ θ γ θ θ

− − −⎡ ⎤= + + + + +⎣ ⎦

+ −

∫  (4.6.27) 

Collecting all terms, and proceeding exactly as in Sec. 4.f.1 (i.e., writing the total 
spectrum as a sum of π and σ component – only the coefficients have changed), we again 
write (4.6.16), which now gets more complicated. 

 ( )( ) ( )2 2 ² 43 ²ln 1 ² 1 3( ) ²( ) 16 4
1 ² 1 ²E E E E

xxx ak x ak ak ak
x x

θ θ θ θ
+

+ − = − + −
+ +

 (4.6.28) 

For a=0, (4.6.28) reduces to (4.6.17).  The value of a depends on the fitting region; e.g. 
for graphite in the interval [0.1:0.5] we find the best fit for a=-0.0391, somewhat varying 
with energy loss.  In this study we limit the scattering angle to about 3 mrad, which 
implies q does not increase above 0.52 au-1.  In this region, the linear approximation is 
quite good, and the small a-coefficient results in a small correction to the magic angle. 
The solution of (4.6.28) is in x = 4.010 for our current case, a correction of less than 1% 
of the previous results. 
For cross sections involving larger q, the corrections to the small q approximation 
become larger.  However, for the non-relativistic magic angle this is not an issue. 
 
 

4.f.3.4  Beyond the small angle approximation. 
 
In all previous sections, small angles approximations were made (see (4.6.6)).  Instead of 
evaluating Eq. (4.6.10), we now calculate the exact integral (4.6.5).  The final equation is 
now 

 
( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )
( )( )

2 22
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1 ( / 2) 1
² 3 1 ( / 2 1 ( / 2) 1 ln
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z tg
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β
β β

β

β β

⎛ ⎞+ + −
⎜ ⎟− + + + − ⎜ ⎟− +⎜ ⎟
⎝ ⎠

= − + + + =

(4.6.29) 

At 15 eV above the graphite K threshold, c = 1.0005.  We find β∗ = 1.991 mrad, i.e., x ≈ 
4 (considering that we used the non-relativistic characteristic angle in f.1).  The 
correction we found by going beyond the small angle approximation is virtually zero. 
 
 

4.f.3.5  Conclusion. 
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All of the approximations we looked at – non-dipole transitions, cross terms, the small 
angle approximation, and the small q approximation – have close to no impact on the 
theoretical non-relativistic magic angle.  They offer no explanation whatsoever for the 
observed discrepancies between experiment and theory. 
 
 
 

4.f.4. Relativistic calculation of the magic angle. 
 
In this section, we will generalize section 4.f.1 by including relativistic theory.  That is, 
we replace (4.6.1) by (4.3.27), which we repeat here for convenience :  
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(4.6.30) 

 
 
Now, we have to rotate the DOS in this expression, integrate the cross section over the 
collection angle of the microscope, and then impose orientation invariance. 
For the rotation of the DOS, we can still use (4.6.14).  The relativistic version of (4.6.16), 
(4.6.12) is now given by 
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 (4.6.31) 

Rewriting in terms of the scattering angle θ (4.6.4) (we drop the ‘) and using 
cosE qc β θ= q=  and 0 cosv q θ ω=q  and writing (1) (1)

11 11q j j=� this can be reworked into 
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(4.6.32) 

 
Let’s now make the small angle approximation (4.6.6), and add a slightly modified 
version of (4.3.33) 
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(2)
01
(1)

11

3j m f
j

ω
= −� =

 (4.6.33) 

where f goes to 1 as q goes to 0 and the small q approximation becomes more accurate.  f, 
a number that measures how valid the small q approximation is, can be evaluated 
numerically by calculating the radial integrals in (4.6.33) explicitly and evaluating their 
ratio.  This can be done using TELNES2.  As these radial integrals contain radial 
functions which are material dependent, some material dependence affects the magic 
angle beyond the small q approximation through f.  In principle f depends on the energy 
loss E and the impulse transfer q, but for the example studied here, we found this 
dependence to be negligible. 
 
We can now write for the magic angle β 
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∫ ∫ (4.6.34) 

Numerical solutions  to (4.6.34) (calculated in Maple) are illustrated in Figure 4-12. 
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Figure 4-12  Numerical/analytical solution of the magic angle of the graphite C K edge for a 300 keV 
beam and 295 eV loss.  The convergence angle is 0 mrad.  The π-weight is the right-hand side of eq. 
(4.6.34), and the σ-weight is the left-hand side.  The magic angle is at the collection angle value (on 
horizontal scale in mrad) for which they cross.  Note that the full formalism gives a different π-curve (red) 
and hence a different magic angle  as compared to the small q approximated “shortened q vector” approach 
(yellow) of Schattschneider et al.  The crucial step is eq. (4.6.33), where f=1 recovers the results of 
Schattschneider et al.  However, in the full formalism, f is slightly different from 1.  The σ-curves are the 
same in both approaches (green). 

 
As before, we study a graphite C K edge at 300 keV beam energy and 295 eV energy 
loss.  The magic angle is found where π and σ integrals are equal.  Note that Figure 4-12 
gives two different π curves.  One is calculated assuming that the small q-approximation 
is valid and f = 1, and gives a magic angle of about 0.62 mrad.  This corresponds to the 
work of Schattschneider et al.5 or Section 4.b.  The other (red) curve uses a correct value 
for the parameter f of (4.6.33), 0.966f = .  This value was obtained numerically from 
TELNES2 calculations, as will be explained in Section 4.f.5.  It leads to a magic angle of 
about 0.68 mrad.  The experimental value we found in Section 4.f.2 was ... 0.68 mrad.  
The non-relativistic theoretical value was 1.99 mrad. 
 
It is now clear that the relativistic EELS theory corrects the prediction of the magic angle 
and makes it roughly equal to the experimental value.  The small q-approximation is 

Fully relativistic magic 
angle : 0.68 mrad 

Shortened impulse 
transfer magic angle : 

0.62 mrad 
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somewhat inaccurate (~10%) even in very common situations – a C K edge at small 
scattering angles, where the more general l,m formalism we developed here gets the 
experimental value almost exactly right. 
 
 
 

4.f.5. FEFF and TELNES2 calculations of the magic 
angle. 

 
The ab initio ELNES programs FEFF75 and WIEN2k/TELNES2 70don’t solve (4.6.34), of 
course ; they calculate the double differential cross section.  It would be rather tedious to 
plot spectra for two sample tilts and for a whole series of collection angles, in analogy 
with the experiments presented in Sec.4.f.2.  Rather, we will calculate the scattering cross 
section, evaluated at a single energy loss value of 295 eV, integrated up to a collection 
angle, and then we plot this spectrum as a function of the collection angle for various 
sample tilts.  The magic angle is the collection angle for which all the sample tilts give 
the same spectrum. 
This would be hard to visualize for the integral of the total spectrum, because the 
differences in the total spectrum between different tilts aren’t very large at all values of 
the energy loss.  Since partial spectra and functions of them must also be equal at the 
magic angle, we plot the π/σ ratio of the spectrum instead of the total spectrum.  This 
ratio is given by the Y10-component of the spectrum divided by the Y11 + Y1-1 
components in the laboratory frame.  Equivalently, if working in Cartesian coordinates, it 
is given by the zz-component divided by the xx+yy components.  This quantity is of 
some interest because it can be linked to the sp2/sp3 content of a carbon system.106 

 : zz

xx yy zz

σπ
σ σ σ σ

=
+ +

 (4.6.35) 

 
First, we show the results of our FEFF calculations. 
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Figure 4-13 Non-relativistic calculation of the π/σ ratio (see text) of the graphite C K edge at 10 eV above 
threshold for a 300 keV beam and three sample to beam orientations.  The magic angle is at the intersection 
of the three curves (ca. 2.3 mrad).  The convergence angle is 0 mrad. 

       

 
Figure 4-14 Relativistic calculation of the π/σ ratio (see text) of the graphite C K edge at 10 eV above 
threshold for a 300 keV beam and three sample to beam orientations.  The magic angle is at the intersection 
of the three curves (ca. 0.63 mrad).  The convergence angle is 0 mrad. 
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Figure 4-15 C K edge of graphite for 3 orientations, 300 keV beam energy, α =0 mrad, β = 0.6 mrad.  
Relativistic calculation. 

 
 

 
Figure 4-16 Carbon K edge of graphite for 3 orientations, 300 keV beam energy, α = 0 mrad, β = 2.4 mrad.  
Relativisitic calculation. 
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The FEFF results of Figure 4-13 and Figure 4-14 clearly reproduce our analytic findings 
of Sec. 4.f.4.  The non-relativistic magic angle is about 2.3 mrad, and the relativistic 
magic angle is 0.63 mrad – quite close to the experimental result of 0.68 mrad. 
 
Because EELS studies tend to work with cross sections as functions of energies rather 
than the more abstract π/σ ratios shown in Figure 4-13 and Figure 4-14, we also show the 
effect of relativistic corrections on the spectrum.  In Figure 4-15, we show the total C K 
spectrum, calculated relativistically, at an almost magic collection angle of 0.6 mrad  
Clearly, the orientation dependence of the spectrum is all but vanished so close to the 
magic angle (0.63 mrad for these calculations).  In Figure 4-16, we show the same 
calculations evaluated at the non-relativistically predicted magic angle, and the 
relativistic calculations clearly show that the spectrum is strongly orientation dependent.  
If the interpretation of a measurement has been based on the assumption that the 
spectrum is rotation invariant at the non-relativistic magic angle, or on the assumption 
that the angle at which the spectrum is found to be rotation invariant equals the non-
relativistic prediction, then it is most likely wrong. 
 
We remark again that for isotropic measurements (i.e., experiments on an isotropic 
material, such as crystals of high symmetry or polycrystalline or amorphous samples, and 
experiments on anisotropic samples in which one averages over all sample to beam 
orientations) the errors of the non-relativistic theory are far less grave, as the relativistic 
correction to the difference in weighing of the π and σ spectra (as represented 
geometrically by the interpretation of the impulse vector contracted in the direction of 
beam propagation) is irrelevant to isotropic measurements, where the π and σ spectra are 
equivalent.  However, the fact that relativistic theory makes the inelastic scattering much 
more forward peaked remains true, regardless of whether the sample is isotropic. 
 
 
Now we show the results of the WIEN2k+TELNES2 calculations.  TELNES2 can 
calculate all three formalisms we’ve discussed so far – the non-relativistic formalism of 
Nelhiebel et al.34, the relativistic small q approximation with the contracted impulse 
transfer vector of Schattschneider et al.5, and the full relativistic l,m formalism presented 
in this dissertation and in Jorissen et al.70 
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Figure 4-17  The π/σ ratio (see text) of the graphite C K edge at 295 eV loss, using a 300 keV beam and a 
0 mrad convergence angle, as a function of the collection semi-angle (in rad).  Three different orientations, 
represented by a tilt angle between the microscope beam and the c axis of the graphite crystal 
(perpendicular to the graphene sheets), are considered.  The magic angle is the value of the collection angle 
for which the three orientations overlap, i.e., orientation dependence vanishes.  Three sets of three such 
curves are calculated using the TELNES2 program : a non-relativistic calculation (red, green, dark blue), a 
small q approximated relativistic calculation (black, red, grey), and a full l,m relativistic calculation (pink, 
light blue, yellow).  The non-relativistic magic angle is situated to the far right of the graph at ca. 0.0023 
rad. 

 
 
The results are shown in Figure 4-17 and in Figure 4-18, which is a detail of Figure 4-17.  
The non-relativistic calculation again gives a wildly inaccurate prediction of the magic 
angle at ca. 2.3 mrad, far from the experimental value of 0.68 mrad.  The relativistic 
contracted q-vector gives a magic angle at about 0.63 mrad, clearly removing most of the 
discrepancy between non-relativistic theory and experiment.  The full l,m relativistic 
calculations lead to a predicted value of about 0.68 mrad, which is about 10% larger than 
the small q vector approximation and coincides with the measured value. 

Small q relativistic : 0.62 mrad 

Full relativistic : 0.68 mrad Non-relativistic : 2.3 mrad 
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Figure 4-18  Detail of Figure 4-17. 

 
 
We recall from the discussion in 4.f.4 that the crucial difference between the results of 
the full l,m and the small q approximated theory stems from the factor f in Eq. (4.6.33), in 
which an integral is approximated for small impulse transfer q, and Schattschneider’s 
work corresponds to f=1.  Of course, there is no way of knowing a more correct value for 
f without actually calculating the radial matrix elements.  Using the ab initio EELS 
program TELNES2, we have evaluated these integrals as show in Figure 4-19. 
 

Full relativistic : 0.68 mrad

Small q relativistic : 0.62 mrad Non-relativistic : 2.3 mrad 
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:  
Figure 4-19 Comparison of the radial integrals of the small q approximation of eq. (4.6.33) .   The missing 
factor f in eq. (4.6.33) is seen to be 0.966 = 1/1.035.  All parameters for the TELNES2 calculation are as in 
previous simulations. 

 
The factor f=0.966 used in Section f.4. was taken from this calculation.  Surprisingly, this 
small correction leads to a ~10% change in the magic angle.   
 
As an interesting side note, the factor f depends on the overlap between wave functions 
and is therefore material dependent.  It turns out, then, that the magic angle is somewhat 
material dependent after all.  Sorini et al.89 discuss other ideas on this material 
dependence. 
 
We remark that TELNES2 doesn’t make any approximations to any of the integrals it 
needs, and therefore doesn’t use this parameter f, which we have introduced only to 
illuminate the difference between both relativistic formalisms. 
 
So far, we have shown integrated quantities.  TELNES2 is also capable of outputting 
spectra (the DDSCS) as a function of scattering angle at a fixed energy loss (which we 
still fix at 295 eV).  We show how the angular shape of the total spectrum (Figure 4-20) 
and its π and σ components (Figure 4-21) differs in the three formalisms.  All 
experimental parameters are the same as above, but we study only the 0°  tilt angle 
spectrum.  For comparison, we also repeat the measurements of Figure 4-8D in Figure 
4-22.   
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Figure 4-20 The double differential scattering cross section of the graphite C K edge at 295 eV loss for a 
300 keV beam incident along the crystal c axis.  DDSCS as a function of scattering angle calculated using 
TELNES2.  The curves are not renormalized. 

 
Figure 4-21  This figure shows the same calculation as Figure 4-20, only now the partial π and σ spectra 
are shown instead of the total spectrum.  The curves are not renormalized. 
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Figure 4-22  Angular distribution of the graphite C K edge, measured at 300 keV beam energy (see Sec. 
4.f.2 ).  Curve B is the π edge, and curve C is the total spectrum.  The “theoretical” curves are non-
relativistic analytical  curves (a Lorentz function of width θE ).  All curves were normalized to have a 
maximum of 1 on the vertical scale.  From Radtke et al.105 

 
Figure 4-21 shows that both the π and the σ cross sections are sharply contracted due to 
the relativistic interaction potential.  This also leads to a different shape of the total cross-
section in Figure 4-20, which now has a big bump due to the earlier occurrence of the σ 
signal.   The only difference between the two relativistic formalisms we studied is the 
difference in overall intensity of the π spectrum. 
Both the much narrower π peak and also the bump in the total cross section are clearly 
and accurately confirmed in the measured scattering profiles of Figure 4-22 .105 
 
If the study of the magic angle seemed somewhat esoteric, then surely these results must 
convince that the non-relativistic scattering theory is gravely flawed.  
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5. Core hole calculations of electron energy loss 
spectroscopy without the supercell 
 
 

5.a. Introduction 
 
In chapter 3.d we introduced Green’s function multiple scattering theory as a formalism 
suitable for the calculation of electronic structure and of energy loss spectra in particular.  
We focused mostly on its real space variant, which is implemented in the FEFF8 code 
and has proven its qualities many times over.43,8,40  Particularly interesting features of the 
real space formalism are its very efficient treatment of the extended energy loss region 
(EXELFS, EXAFS) using the Path Expansion ; and its freedom from symmetry 
requirements.  It is applicable to aperiodic, asymmetric system.  This is of great help in 
the study of molecules, amorphous systems, impurities and defects in crystals, etc. 
 
However, in many situations one is interested in the properties of infinite periodic 
systems or crystals.  A reciprocal space formalism, such as the KKR theory47,46 described 
in the introduction, is clearly well suited to describe this crystal.  The question arises 
whether it is possible and efficient to describe the infinite periodic system in a real space 
formalism, such as Real Space Multiple Scattering (RSMS). 
 
The formal equivalence of the long range reciprocal space formalism and the short range 
real space formalism has been discussed before, at least as early as in Schaich6.  Schaich 
points out that as the real space results for the electronic structure are taken to longer and 
longer range, they should converge to the reciprocal space results. 
 
The question of efficiency of RSMS then depends on the “near-sightedness” of nature, 
which has often been remarked upon.107  The extensive experience of the RSMS 
community shows that real space calculations of the electronic structure of crystals 
indeed converge as a larger cluster of representative atoms is taken into account.  A XAS 
or EELS spectrum is often fairly converged for a cluster of about 150 atoms, and very 
well converged for a cluster of 300 atoms.108,8,9 
 
It may seem that this is all that is to be said.  However, the rest of this chapter will be 
devoted to developing, implementing and discussing a reciprocal space multiple 
scattering formalism for the ab initio calculation of EELS and XAS (and electronic 
structure in general).  The resulting formalism will be very close to impurity KKR, 
indeed fully equivalent to it, but tailored specifically to be used in connection with 
RSMS, and implemented in FEFF8. 
 
Our motivations are the following : 
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1/  To improve the efficiency of FEFF8 calculations of periodic systems and remove the 
possibility of real space finite cluster size artifacts in the calculation. 
2/  To investigate some of the notorious cases for which RSMS presently fails to give 
good results.  We will look in particular at the diamond C K edge, which is very hard to 
converge with respect to cluster size ; and at the graphite C K edge, where RSMS 
calculations using FEFF8 do not describe the π bonds well. 
3/  To verify the equivalence argued by Schaich6 numerically.  We can now calculate real 
space and reciprocal space (short and long range) results within one formalism and then 
verify that the real space results indeed converge to the reciprocal space results. 
 
There is a fourth motivation, arguably the most important and novel one for the 
calculation of XAS and EELS spectra of crystals. 
 
4/  We aim to improve the reciprocal space calculations of EELS by eliminating the need 
to use a supercell to calculate core loss spectra.  Hence we also eliminate the convergence 
and artifact problems that come with the supercell approach. 
 
While reciprocal space formalisms such as DFT and KKR are perfectly adapted to 
calculation of the ground-state properties of a crystal due to their explicit use of periodic 
boundary conditions (PBC), these very PBC become a burden when calculating 
excitation spectra.  Within independent particle theory, the excitation is often modeled by 
selecting one atom in the unit cell and placing one of its core electrons into the 
conduction band, leaving a so-called “core hole” in the core state.  This effectively maps 
the excitation problem onto an impurity problem.  As the PBC copy the excited atom into 
every neighboring unit cell and so on, unphysical core hole – core hole interactions will 
introduce artifacts into the calculation, unless a unit cell is chosen large enough that 
neighboring core hole atoms “do not see each other”. 
 
In the real space approach, there is obviously no such problem, as there are no PBC.  We 
will therefore propose a hybrid approach for the calculation of excitation spectra for 
crystals :  
(i) calculate the ground state of the perfect crystal in reciprocal space ; 
(ii) add the core hole and calculate the excitation spectra in real space. 
 
In (i), the conventional unit cell is used, and in (ii) there is no unit cell.  Therefore, any 
problem related to the use of supercells is avoided. 
 
This hybrid approach is, in itself, not new.  It goes back at least as far as Beeby109,110, 
where a similar scheme was used in KKR-theory for calculations of the electronic 
properties of impurities.  However, our application of the same scheme to core hole 
EELS and XAS spectroscopy is an innovation with much potential to improve final state 
rule EELS and XAS. 
 
We remark that our new approach allows to study the effects of using a supercell in more 
detail, as there is now an alternative method without supercell to compare to. 
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5.b. The k-space multiple scattering formalism. 
 
As we have seen in Chapter3.d, RSMS and FEFF8 use a Green’s function formalism.  
The Green’s function of the electron G is calculated from the free propagator G0 and the 
scattering matrix t. 
 
In the RSMS theory, the EELS or XAS spectrum is calculated by evaluating matrix 
elements of the Green’s function : 
 ( ) Im ( )

i
E cst i G E iμ = ∑  (5.2.1) 

The Green’s function is calculated by considering all possible scattering paths of the 
photoelectron of energy E : 
 

2 2 2 2 2 2 3 3 3

2 2 3

0 0 0 0 0 0
' ' ' ' ...nn nn nn n n n nn n n n n n n

n n n
G G G t G G t G t G= + + +∑ ∑∑  (5.2.2) 

where the n-indices label atoms in the solid, the t-matrices describe all scattering events, 
the G0 are free propagators, and G on the left hand side of the equation is the full 
propagator, expressed in a site and angular momentum basis (see Sec. 3.d.1 ; the angular 
momentum indices are suppressed here for the sake of notational clarity).  Eq. (5.2.2) is a 
sum containing an infinite number of terms involving a near infinite (of order Avogadro’s 
number NA) number of atoms.  To calculate the absorption spectrum near edge thresholds, 
the Full Multiple Scattering (FMS) approach has been developed, in which one limits the 
number of atoms to a small cluster around the absorber (typically 100-300 atoms), but 
sums implicitly over all scattering paths within this cluster by casting (5.2.2) as a matrix 
inversion : 

 
0 0 0 0 0 0

0 0 1 0 1 0

...
[1 ] [1 ]

G G G tG G tG tG
G tG G t G− −

= + + +

= − = −
 (5.2.3) 

For EXELFS or EXAFS, that is for energy losses more than 50 eV beyond the edge 
threshold, it is calculated by an explicit path expansion.  This means that a limited set of 
paths (usually limited by path length and maximum number of scattering events) in a 
finite cluster of atoms is considered, as in the first line of (5.2.3).  For ELNES or 
XANES, that is for energy losses up to 50 eV beyond the edge threshold, “Full Multiple 
Scattering” or FMS is used, meaning that within a finite cluster of atoms all paths are 
summed up to infinite order.  This is done by the matrix inversion in the first line of 
(5.2.3). 
 
Crystals are infinite systems, and therefore the matrices in (5.2.3) are of infinite rank.  In 
real space calculations, one would (just as one does in practice for finite but rather big 
systems) truncate the matrices at some radius in real space.  Sometimes it is hard to 
converge spectra in this respect. E.g. diamond requires at least 600 atoms in a FMS 
calculation.  The periodicity of crystals makes it more elegant and advantageous to take 
the calculation to k-space.  This way, it is possible to treat the ‘full’ crystal without 
introducing a cluster cut-off radius, as was first described in detail by Beeby.109  We 
proceed analogously here. 
We introduce the k-space KKR structure constants K as the lattice Fourier transform of 
the real space free propagator G0 : 
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 ( ) ( )( ).1 0 0 0
, ,( ) lim

N
i

i j i jN i j
lattice vectors

K N e G G Gαβ α β α β
−

→∞
≠

= = + − +∑ ijk r
i α j βk r a r a  (5.2.4) 

where the lattice of the crystal consists of the vectors { }ir (Roman indices ; these are 
integer linear combinations of the three basis vectors of the lattice), and vectors defining 
the position of atoms in the unit cell { }αa (Greek indices).  Summations over Greek 
indices run from 1 to m, the number of atoms in the unit cell.  Summations over Roman 
indices run over all N→∞ atoms in the crystal.  The inverse transformation is 
 .1 0

,( ) i
BZ i j

BZ

d K e Gαβ α β
−−Ω =∫ ijk rk k  (5.2.5) 

Substituting (5.2.5) in (5.2.2) gives 

 
'' 2 2

2 2 2

2 2

22

2 3 3

0 0 0 0 0 0
' ' 2 2 2 ' 2 2 2 3 3 3 '

2 2 3

. ..
' '

..
2 2 3 '

...

( ) ( ) ( )

( ) ( ) ( )

ii i iii

iii

nn nn nn n n n nn n n n n n n
n n n

i ii

iBZ BZ BZ

ii

G G G t G G t G t G

d K e d d K t K e e

d d d K t K t K e e

αα αα α α α
α

αα α α α α α α

− −−

−−

= + + +

= +

+

∑ ∑∑

∑∫ ∫ ∫
k r k' rk r

k' rk r

k k k k' k k'

k k' k'' k k' k'' '3 3

3 3 2 2

.

...

i i ii

i i BZ BZ BZ

e
α α

−

+

∑∑ ∫ ∫ ∫
k'' r

 (5.2.6) 

where we have used the notation n=(i,α), n’=(i’,α’).  Now we can use the fact that the 
system under consideration is periodic, to simplify this expression.  We treat the third 
term of (5.2.6) ; all others are treated similarly : 

 

' ''2 3 3 ' 2 3 32 2

2 3 2 3

''' 3 '2 2

2 3

' 2

. . .( ) .. .( .

( .( . . )( . .

( .( .
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i i i ii ii
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i i
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e e e e e e e

e e e e

e e

− − +− −
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=

=

=

∑∑ ∑∑

∑ ∑

k' r k'' r k' r r k'' rk r k rk+k'+k'') r

k' -k'') rk' r k rk+k'+k'') r k'' r

k' r kk+k'+k'') r

( )

( ) ( )

'' ' 32

2 3

'' 2 2

2

'

( .. ) .

( . . )( .

.

i ii i ii

ii iii n

ii

ii

i i

ii
BZ

i

i
BZ BZ

e e

e e

e

δ

δ δ

+−

−

= Ω

= Ω Ω

∑ ∑

∑

k' -k'') rr k'' r

k' r k rk+k') r

k r

k' - k''

k' - k'' k - k'

 (5.2.7) 

The Green’s function is then given by 

 

'

2 2 2

2

2 2 2 3 3 3

2 3

.
' ' '

'

( ) ( ) ( )

( ) ( ) ( ) ...

ii

unit cell
i

nn
BZ

unit cell unit cell

G d e K K t K

K t K t K

αα αα α α α
α

αα α α α α α α
α α

− ⎡
= +⎢

⎣
⎤

+ + ⎥
⎦

∑∫

∑ ∑

k rk k k k

k k k

 (5.2.8) 

This can once more be cast as a matrix inversion, 
 ( )'

1.
' ' '

'
1iii

nn
BZ

G d e KT K T tαα α αα
αα

δ−− ⎡ ⎤= − =⎣ ⎦∫ k rk  (5.2.9) 

Equation (5.2.9) yields the Green’s function, and hence the electronic structure and 
excitation spectra, without any finite cluster approximations.  The singularities of the 
integrand of (5.2.9) yield the band structure.  This is formally equivalent to KKR 
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theory,47,46 where the band structure is obtained from the singularities of the scattering 
path operator 
 

11( ) ( )K tτ
−−⎡ ⎤= −⎣ ⎦k k  (5.2.10) 

 
The indices n,n’ on the left hand side of (5.2.9) number atoms in a real space lattice or 
cluster ; the indices α,α‘ on the right hand side label the corresponding sublattices and 
only run from 1 to m even in infinite crystals.  Eq. (5.2.9) is a prescription for calculating 
in reciprocal space the real-space Green’s function Gnn’. 
 
 
 

5.b.1. Introducing the core hole. 
 
Calculations of EELS or XAS spectra are naturally concerned with excited systems, not 
with systems in their ground state.  Excitations are naturally multiparticle events ; 
however, they are conveniently modeled within one electron theory by considering a 
system containing a core hole.  This is done by calculating the electronic structure of a 
system which contains one explicitly excited atom (with one electron transferred from a 
core state to the conduction band), much like an impurity calculation.  In principle, this 
destroys the periodicity of the crystal, leading to all the problems of band structure 
methods discussed in Sec. 5.a. 
 
However, adding the core hole to the formalism we’ve established here is almost trivial.  
It is situated entirely in real space, avoiding all the problems with PBC. 
 
Assume that we have the (real space) solution Gp for the perfect crystal, calculated using 
(5.2.9).  The system with core hole has the same KKR structure constants as the perfect 
system, and a scattering matrix T that is different only in one site block Tcc corresponding 
to the core hole atom.  Its Green’s function G is given by basic matrix algebra: 

 
( )

0 1 0

10 0 1 0

(1 )

(1 ) 1

perfect impurity p i p p

p i p i p

T T T T T G G t G

G G T G T G G T G

−

−−

= + = + = −

= − − = −
 (5.2.11) 

This follows from (A+B)-1 = (1+A-1B)-1 A-1.  Equation (5.2.11) becomes particularly 
simple when Ti is nonzero in one block only (as for the core hole).  In this case, the 
Green’s function elements between sites n and n’ is given by 
 ( ) ( )( )( ) 1

' ' '1 1 1 1p p i p i p
nn nc nn nc nc nc c cc c cnG G G t G t Gδ δ δ

−
= − + + − −  (5.2.12) 

where c is the index of the core hole (which we could set to one), and the indices p and i 
stand for perfect and with impurity, and 1 is the unit matrix.  For the core hole atom, we 
get 
 ( ) 1

1 p i p
cc cc c ccG G t G

−
= −  (5.2.13) 

Gcc is needed for the calculation of an EELS or XAS spectrum. 
 
The treatment of impurities is done in impurity KKR in precisely the same way.109 
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5.b.2. Monoatomic lattices. 
 
If the unit cell contains only one atom, the summations over a can be dropped from 
(5.2.4) and (5.2.9), simplifying the equations to 

 . 0
1,

1

( ) lim
N

i
jN j

lattice vectors

K e G
→∞

≠

= ∑ 1jk rk  (5.2.14) 

and 
 ( )'

1.
' 1 ( ) ( )iii

nn
BZ

G d e K t K−−= −∫ k rk k k  (5.2.15) 

This is the result of Schaich6 and Beeby109. 
 
 
 

5.b.3. Calculation of the KKR structure factors. 
 
The most efficient scheme for the calculation of the KKR structure factors defined in Eq. 
(5.2.4) of the previous section, is the Ewald summation technique.111  It is important to 
use the approach described in these references, as brute force numerical approaches are 
wasteful at best, and potentially problematic.  The technique is described in a few more 
recent and more easily accessible papers.112,113  However, the theory is always described 
for monoatomic lattices.  We here present the complete derivation of the Ewald 
summation of the KKR structure factors of “complex” crystals containing an arbitrary 
number of atoms in the unit cell. 
 
 
We remember the definitions : 

 .0 0
,

1( ) : ( ) : lim ij
N

i
i jN i j

lattice vectors

K G e G
Nαβ αβ α β→∞

≠

= = ∑ k rk k  (5.2.16) 

 ( ) ( )( )0 0
,i jG Gα β = + − +i α j βr a r a  (5.2.17) 

 
 . .( )1 1 1 0 0

, ,( ) ij lp iji i
BZ BZ l p i j

l pBZ BZ

d K e N G d e Gαβ α β α β
− −− − −

≠

Ω = Ω =∑∫ ∫k r k r rk k k  (5.2.18) 

 
Calculating Kαβ by use of (5.2.16) is very inefficient and can lead to convergence 
problems.  What’s more, we also need the structure factor expressed in an angular 
momentum basis L,L’ (L=l,m).  To achieve all this, we use a technique called Ewald 
summation.111  We define a dummy function 
 ( ) ( , , , ) ,G short for G p p Eαβ αβ = = −R r r' k R r r'  (5.2.19) 
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The requirements for this function are : 
 , ' , '0 0

lim ( ) lim ( )L L L LR G
G K and G Kαβ αβ α β α β→ →

= =R R  (5.2.20) 

and Gαβ  must be such that it’s convenient to calculate. 
 
A good choice is 

 ( ) '1( ) 4
ip

i
s

eG eαβ π
− −

−= −
− −∑

s αβ

s

R r a
k.r

s αβ

R
R r a

 (5.2.21) 

where the prime on the summation symbol means that the sum runs over all lattice 
vectors excluding the term rs=0.   The Fourier transform of Gαβ : 
 ( )0( ) ( ) ; 0i

sBZ
G e d G if lattice otherwiseαβ

− = − + ∈ =∫ sk.r
s αβR k R r a r  (5.2.22) 

where G0 is the real-space free propagator (notice that this definition is not the Rehr-
Albers normalization).  It is now clear that (5.2.21) satisfies (5.2.20). 
 
We use two identities proven by Ewald111 almost a century ago : 

 
22 2

2( )
4

0( )

2ip p

C

e e d
ξ

ξ ξ
π

− − − ++∞
=

− ∫
s

s
R r R r

sR r
 (5.2.23) 

 
( )2

2 2 2

3
2

( ) .( ) 3 4
i

i

s n
lattice reciprocal

lattice

e eξ ξπ ξ
τ

+
− +

− − + − −=∑ ∑
n

n
s s

k K
K .R

R r k r R  (5.2.24) 

τ  is the volume of the first BZ.  Using (5.2.23), we now write (5.2.21) as 

 ( )
( )

22 2
2'1 2 4

0 2

2( ) 4
p

i
s

G e d d e
η ξ

ξ
ηαβ π ξ ξ

π

− − − ++∞−
⎛ ⎞⎛ ⎞
⎜ ⎟= − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∫ ∫
s αβ

s
R r a

k.rR  (5.2.25) 

The prime on the lattice sum means that the 0-term is omitted.  The contour (C) of the 

integral is defined as follows.  From 0 on, let arg / 2arg
2

p πξ −
=   for a while ; then, the 

contour goes to the real axis by the time 2
η is reached.  After that, the contour just 

runs along the real axis.  Now the first part of the integral will be transformed to 
reciprocal space by using (5.2.24) : 

( )
( )

( )
( )

22 2
2

2 2 2
2 2

2 2

'1 4

2

3
22 ( - 23 4 4

0
0

2( ) 4
p

i
s

p pRi

n

G e e d

e e d e d

ξ
ξ

αβ
η

η
η ξ

ξ ξ

π ξ
π

π ξ ξ ξ
τ

+∞ − − − +−

+ −
− − ++ −

⎡ ⎛ ⎞
⎢ ⎜ ⎟= − ⎢ ⎜ ⎟⎜ ⎟⎢ ⎝ ⎠⎣

⎤
⎥+ − +⎥
⎥⎦

∑ ∫

∑ ∫ ∫

s αβ
s

n

n αβ

R r a
k.r

K k
k K ). R a

R

 (5.2.26) 

where the last term needs to be added because the lattice sum in (5.2.24) runs over all 
sites, whereas the s=0 term is excluded from (5.2.25).  s numbers lattice vectors, whereas 
n numbers reciprocal lattice vectors.  Now use 
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 2 23

0

2a a
b

x bx e dx e
a

− −
− =∫  (5.2.27) 

to calculate the second term.  This leads to 
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2 2
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2 2
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( - 21 4
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τ ξ
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⎢ ⎜ ⎟= −

⎜ ⎟⎢ ⎝ ⎠⎣
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⎦

∑ ∫

∑ ∫

s αβ
s

n

n αβ

R r a
k.r

K k

K +k). R a

n

R

K k

 (5.2.28) 

Now it is time to do the basis set expansion.  In the end, we want an expression of the 
form 
 '

' ' ' '
'

( ) ( ) ( ') ( ) ( ') ( ) ( )l l
L L l l LL l l L L

L L

G i B j pr j pr p j pr n pr Y Yαβ α β δ−⎡ ⎤= +⎣ ⎦∑∑R = r - r' r r' (5.2.29) 

However, as the Green’s function is obviously a function of R, it can also be expanded as 

 ( ) 1 cos( )( ) 4 ( ) ( )l
L l L

L

pRG i D j pR Y
Rαβ αβπ −= − + ∑R R  (5.2.30) 

which is much simpler.  The B coefficients can be recovered as 
 ' '4L L LLB D Cα β αβπ Λ

Λ
Λ

= ∑  (5.2.31) 

where C are Wigner 3j symbols.  The divergent terms in (5.2.29) and (5.2.30) are only 
needed for r and r’ in the same cell.  (Remember that FEFF8 has overlapping muffin tins, 
so even for R=0 this is important.)  Finally, the spherical harmonics in (5.2.29) and 
(5.2.30) are real (if one were to use complex spherical harmonics, one of them would 
carry a complex conjugate *). 
We will now calculate *

4
( ) ( )lm lm Rd G Y dαβ αβπ

= Ω∫ R R  .  The Dlm will follow later by 

taking the limit R to 0.  Using the Rayleigh expansion 
 *4 ( ) ( ) ( )i l

l L L
L

e i j kr Y Yπ= ∑k.r k r  (5.2.32) 

where ( ) ( , )lm lmY Y θ φ≡ k kk  
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( ) ( ) ( )
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e d e e Y d

d d d

η ξη ξ
αβ

ξξ

η π

αβ αβ αβ

τ π π πδ δ ξ

π ξ

2

2

− − − +−−−

+∞− − − −

= − +
−

− Ω = +

= + +

∑ ∫

∑ ∫ ∫

n αβ

s αβs

k .a
n

R r ak.r
n n

k

k k k K (5.2.33) 

Splitting the sum in 3 terms is just a matter of convenience.  τ is the volume of the BZ, as 
usual.  Remarking that 

 
( ) ( )( )

22 2 22 2 2 .( ) R i ie e e
ξ ξξ

⎛ ⎞− +⎜ ⎟ −− − − ⎝ ⎠=
s αβ s αβs αβ

r +a r +a RR r a  (5.2.34) 
one can again use (5.2.32) to calculate dαβlm

(2) : 
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(5.2.35) 

Now for small arguments (R->0), the spherical Bessel functions have the following 
property 

 ( ) ( )
l

l l
aj ax j bx
b

⎛ ⎞≈ ⎜ ⎟
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 (5.2.36) 

Therefore 
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(5.2.37) 

Comparison to (5.2.30) now allows to identify the DLM : 
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(5.2.38) 

Then, taking the limit R->0 (as Dlm ought to be independent of R)  
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 (5.2.39) 

Eq. (5.2.39) is the main result of this paragraph. 
 
The term DLM(3). 

 ( ) ( ) ( )2/2 / 2 /21 1 12 2 14
00 0

1 1
4 ! 4 !(2 1)

l lp
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∑ ∑∫ ∫ (5.2.40) 

Now it is important to remember the definition of the contour : 
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 (5.2.41) 

This definition guarantees that  
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       (5.2.42) 
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This ensures that the integrand of (5.2.40) goes to zero as ξ goes to zero, and the integral 
exists.  The final result is then 

 (3)
0 0
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1 1
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lm l m
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ED
l l

δ δ η
π η

+∞

=
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∑  (5.2.43) 

 
 
The term Dlm(2) : 
The integral in Dlm(2) can be expressed in terms of incomplete Gamma functions : 
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 (5.2.44) 

We can use the following representation of the incomplete Gamma function 
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where f is the continued fraction defined by (5.2.45).  Combining (5.2.39), (5.2.44) and 
(5.2.45) gives 
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5.c. Implementation in the FEFF8 program 
 
Eq. (5.2.9), (5.2.12) and (5.2.39) have been implemented in the RSMS ab initio program 
FEFF8.114  For the calculation of ELNES, FEFF8 now offers three approaches : 
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being the Path Expansion (PE, first line of (5.3.1)) and the Full Multiple Scattering (FMS, 
second line) in real space (see Sec. 3.d), and the k-space approach (third line of (5.3.1)) 
of Sec. 5.b.  In all three cases, the core hole is treated in real space.  In the PE and FMS, it 
is simply one atom in the real space cluster used for the calculation.  In the k-space 
approach, it is added in real space after evaluation of (5.3.1) : 
 [ ] 11ch chG G t G −= − Δ  (5.3.2) 
 
All quantities in (5.3.1) and (5.3.2) are matrices in a site and angular momentum basis.  
The number of sites is given by the number of atoms in the cluster for real space 
calculations, and is given by the number of atoms in the unit cell for reciprocal space 
calculations.  Similar angular momentum cutoffs are needed in real space and in 
reciprocal space. 
As one typically needs a cluster of 100-300 atoms in real space calculations, the 
reciprocal space treatment becomes especially advantageous for crystals with small unit 
cells containing only a few atoms.  The computational cost of the calculation is almost 
completely dominated by the matrix inversions in (5.3.1).  In k-space calculations, one 
needs to one inversion for each k-vector needed to sample the Brillouin Zone integral of a 
small matrix (~ number of atoms in the unit cell); compared to one inversion of a large (~ 
number of atoms in the cluster) matrix for real space FMS.  As the unit cell of a crystal 
becomes larger, fewer k-points are typically needed to calculate the BZ integral ; 
however, the calculations still become  slower with increasing unit cell size. 
 
For EXELFS or EXAFS, at energy losses more than 50-70 eV above threshold, the 
angular momentum cutoffs required for converged results gradually increase.  At the 
same time, the Path Expansion formalism becomes increasingly more successful at 
describing the spectrum.  It is therefore recommended to stick with the real space PE 
calculations for extended fine structure, even for crystals.  (The potentials and t-matrices 
needed for the PE calculation can still be calculated in k-space.) 
 
Reciprocal space calculations with FEFF8 have been automated and are easy to use.  A 
more technical description is given in the Appendix 8.e.  Here, we mention only a few 
major points. 
The k-space modules of FEFF8 are activated simply by placing the “RECIPROCAL” 
keyword in the input file.  The crystal structure can then be specified by giving the lattice 



 118

vectors in Cartesian coordinates, and by giving the basis in one of several choices of 
units.  FEFF8 will generate a real space list of coordinates based on this information, 
which can be used for the Path Expansion.  No further input is required, except for the 
number of k-vectors used to sample the Brillouin Zone.  This is also an important 
parameter in other reciprocal space codes, e.g. band structure codes such as WIEN2k.  It 
is up to the user to converge the calculations in terms of this k-vector mesh. 
The KKR structure factors are calculated for every energy loss as explained in Section 
5.b.3.  The Green’s function and the core hole effect are calculated as explained in 
Sections 5.b and 5.b.1. 
 
 
Using the symmetry of the crystal. 
Crystals are characterized by their space group, which describes the symmetry of the 
crystal.  This symmetry simplifies the problem in two ways.  First, the Green’s function 
matrix exhibits symmetry in terms of sites or angular momentum components.  
Therefore, it is necessary to calculate only part of it – the rest of the matrix follows by 
symmetry requirements (e.g., related to another part by a unitary transformation ; or zero 
because of symmetry).  FEFF8 currently does not use this symmetry at all. 
Second, the reciprocal lattice inherits symmetry from the real space lattice.  Therefore, 
the reciprocal space integral in (5.3.1) can be reduced and less k-vectors are needed to 
calculate it.  It is possible to use this symmetry in FEFF8.  However, it is important to 
understand precisely which quantities one needs.  If only the trace of the Green’s function 
matrix is needed, then it is sufficient to simply integrate over the Irreducible wedge of the 
Brillouin Zone (IBZ).  However, if off-diagonal components are needed, then the whole 
Brillouin Zone (BZ) needs to be reconstructed from the IBZ by applying unitary 
transformations.  The need for off-diagonal elements is less exotic than it might seem, as 
they are clearly needed in order to add the core hole according to (5.3.2).  This 
reconstruction is possible in FEFF8, but some care is required in using symmetry. 
 
 

5.c.1.  Convergence of the k-space FEFF8 calculations. 
 
In a k-space FEFF8 calculation, the Green’s function is calculated by numerically 
evaluating the Brillouin Zone integral (5.2.9).  The integral is approximated by a sum 
over a finite mesh of k-vectors.  The number of k-vectors in this grid is the major 
convergence parameter of the calculation.  Convergence depends on the band structure of 
a specific material, and also on the desired accuracy.  E.g., to simulate a spectrum with 
large life time broadening, it is not necessary to converge small details in the Density of 
States. 
Different methods for evaluating BZ-integrals have been proposed, most notably special 
k-point methods115,116 and tetrahedron integration.117  FEFF8 uses the latter approach as 
described in Bloechl et al.117 
 
Below we show, as a first example, the C K edge of diamond calculated with FEFF8. 
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Figure 5-1  Convergence of the C K edge of diamond, calculated using FEFF8, with the number of k-
vectors used for Brillouin Zone integration (10, 100, 1000, 5000 and 25000 k-vectors). 

 
Reasonable convergence is achieved for 1000 k-vectors; good convergence for 5000 k-
vectors.  Even for 100 k-vectors, the peaks of the fine structure are in the right location, 
although the fine structure is clearly not converged. 
 
 
As a second example, we calculate the Density of States of HOPG graphite. 

 
Figure 5-2  Total Density of States of graphite, calculated using FEFF8, and its convergence in terms of 
the number of k-vectors used for BZ integration.  We show calculations using 100, 1000, 3000 and 5000 k-
vectors in the full Brillouin Zone, compared to a converged WIEN2k calculation. 
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For the calculation of the unbroadened and much sharper DOS, convergence appears 
somewhat slower, and 5000 k-points are needed for a converged result.  It is particularly 
interesting to look at the zero width band gap at the Fermi level (at -13.8 eV in the Fig.), 
which takes 3000 k-vectors to appear clearly. 
For comparison, we show the DOS as calculated by the band structure code WIEN2k.7  
We see that FEFF8 gets the essential features and fine structure of the π and σ bands 
right (as compared to WIEN2k), but that it overestimates the energy splitting between the 
two.  We believe that this is a problem of the muffin tin potential, which approximates 
the potential by its spherical average.  For anisotropic states such as the π bonds in 
graphite, this is a bad approximation.  WIEN2k, on the other hand, is a full potential 
code.  We expect that a generalization of FEFF8 to a full potential description will reduce 
this discrepancy between the two codes.  Another important difference between WIEN2k 
and FEFF8 is that the latter uses a quasiparticle containing a self-energy, whereas the 
former doesn’t include the self-energy. 
 
 
The convergence of calculated properties with respect to the number of k-points used to 
evaluate Brillouin Zone integrals is typical of all methods that use a grid of k-points to 
sample such integrals.  It’s impossible to give a general recommendation for how many 
k-points to use, as the required number depends on the size of the Brillouin Zone (which 
is inversely proportional to the real-space unit cell) and on the complexity of the band 
structure.  However, we find that in FEFF k-meshes of the order of 103 points are often 
sufficient to find good results for the systems (i.e., fairly small unit cells) studied in this 
work. 
 
 
 

5.d.  Verification of the real space finite cluster 
approximation 

 
All the results that have been obtained using the Real Space Multiple Scattering method  
(e.g., the FEFF8 program8) for crystals rely on the assumption that one can calculate the 
spectrum of an atom in an infinite solid using its local electronic structure calculated in 
real space by replacing the solid with a finite cluster of atoms surrounding the probed 
atom.  
It would be overly dramatic to say that the present work will prove or disprove the real 
space results for periodic structures.  After all, people have previously observed that 
1/  Typically, 100-300 atoms are sufficient in FEFF8 RSMS calculations to converge 
near-edge fine structure of XANES or ELNES. 
2/  For many materials, one can obtain satisfactory agreement between RSMS 
calculations of spectra and actual experimental spectra. 
3/  It has been theoretically motivated that the real space and reciprocal space treatments 
of multiple scattering Green’s function theory ought to be equivalent.6 
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4/  For many materials, one can obtain satisfactory agreement between RSMS 
calculations of various material properties and other theoretical calculations that are 
based on periodic boundary conditions.86 
 
In the large majority of cases, the real space cluster approach to crystals has proven 
correct and efficient.  However, there are cases where convergence in terms of cluster 
size is slow or elusive (e.g., the diamond C K edge). 
 
Our new reciprocal space Green’s function calculations provide an additional opportunity 
to validate the real space cluster approach.  We can perform real and reciprocal space 
calculations within the exact same theoretical framework, with the exact same 
approximations and conventions.  We can show that real space cluster calculations indeed 
converge to the same result as reciprocal space calculations, thereby effectively backing 
up the conclusions of Schaich6 numerically. 
 
 
We show the Si K edge in Figure 5-3.  We show the convergence in reciprocal space as a 
function of the number of k-vectors used for the BZ integration, and we show the 
convergence in real space as a function of the number of atoms used for the finite cluster 
FMS inversion.  The t-matrices of (5.3.1) were calculated in k-space for k-space 
calculations, and in r-space for r-space calculations.  One can clearly see that the two 
calculations converge to the same result.   
We also provide comparison with experiment.  Agreement is acceptable, but not 
excellent.  It looks as if the core hole lacks strength in the calculations. 
 
Similar results were seen in the calculation of other ionization edges as well. 
 

 
Figure 5-3  Convergence of the Si K edge as a function of cluster size in real space (short range) 
calculations, and as a function of Brillouin zone sampling in reciprocal space (long range).  A measured 
spectrum is shown in red. 
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5.e.  Core hole EELS without the supercell 
 

5.e.1. Problems with the supercell core hole approach 
 
We have already mentioned several times how the EELS excitation process is modeled in 
single particle theory by calculating the states of an ionized atom in a supercell.  This 
approach is called the “Final State Rule” (FSR) because one calculates states in the ‘final’ 
picture of the EELS process (when the target atom is in its ionized state) and uses those 
to calculate a transition strength.  This is a static model of a dynamic process, and so it 
would be unrealistic to expect it to be flawless. 
 
Final state calculations are still commonplace, even though progress is steadily being 
made on more dynamic descriptions of the energy loss process.  FSR calculations often 
yield good results, providing dramatic improvements in many cases over simple ground 
state calculations.  However, it is worth demonstrating the problems that commonly occur 
with FSR core hole calculations. 
 
Two questions in particular deserve our attention : 
How problematic is supercell size convergence? 
And : Which core hole should one use in the ab initio calculations? 
 
 

5.e.1.1 Supercell size converge 
 
First, we give a few examples of successful calculations, where the supercell FSR 
calculations do not run into problems. 
 
We show ab initio WIEN2k calculations of the C K edge of a (7,0) single wall carbon 
nanotube (SWCNT).2  
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Figure 5-4  C K edge of a (7,0) single wall carbon nanotube calculated using WIEN2k.  The beam energy 
is 300 keV, the collection angle is 3 mrad and the convergence angle is 1.9 mrad.  Spectrum calculated 
without core hole (marked “SA” for Sudden Approximation) is shown together with a series of core hole 
calculations using super cells of increasing size : 1x (28 atoms), 2x (56 atoms) and 3x (84 atoms) the 
regular unit cell repeated along the axis of the nanotube. 

 
Figure 5-4 shows a big difference between spectra calculated without core hole (labeled 
“SA”) and with core hole.  The unit cell of the (7,0) SWCNT is a thin section of the tube 
cut perpendicular to its long axis, containing 28 atoms.  Perpendicular to the tube, there is 
a large distance between the core hole atom in the unit cell and its mirror image in the 
neighboring cells.  Along the axis of the tube, however, the unit cell is quite thin, and 
successive core hole atoms are only of the order of 2 bond lengths apart.  This is close 
enough to introduce artifacts in the spectrum.  Doubling and tripling the unit cell along 
the axis of the tube, the core hole EELS spectrum can be converged.  Figure 5-4 shows 
clearly that a 28 atom cell is not large enough for convergence, but a 56 atom cell is. 
 
As a second example, we show the O K edge of MnO2.21 
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Figure 5-5 Convergence of the O K edge of MnO2 with supercell size.  Full core hole calculations are 
shown for a core hole - core hole distance of 5.8 Angstrom (blue) and of 8.6 Angstrom (red).  The spectrum 
is already quite well converged for the smaller supercell. 

 
 
The supercells shown for the O K edge of rutile TiO2 have core hole – core hole distances 
of 5.8 Angstrom and 10.5 Angstrom.  The supercells shown for the O K edge of MnO2 
have core hole – core hole distances of 5.8 Angstrom and 6.8 Angstrom.  In both cases, 
the differences between the smaller and larger supercell are noticeable but far less 
dramatic than in the case of the SWCNT above.  For many applications, the smaller super 
cell will suffice here. 
 
 
However, in some cases convergence is hard or impossible to reach.  A notorious case is 
the C K edge of diamond.  Below we cite the work of Taillefumier,83 in which the authors 
claim to achieve convergence of their calculations in terms of the size of the unit cell. 

Core hole in 5.6 A supercell 
Core hole in 8.6 A supercell 
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Figure 5-6 Calculated C K edge x-ray absorption spectra in diamond for different supercell sizes, 
compared with experimental data.118  A 286.1 eV shift was applied to the experimental spectrum. 

 
However, the vertical offsets in Figure 5-6 are misleading.  Certainly the ab initio results 
are converging well enough to conclude that they won’t match the experimental data.  
But the strength of the excitonic peak at the threshold keeps increasing with increasing 
supercell size.  In Figure 5-7 we show our own calculations, which reveal the same trend. 
The calculations were done using WIEN2k, which should be equivalent to the method 
used in Figure 5-6. One can see clearly, going from the ground state spectrum (black full 
line) to larger and larger supercells, that the oscillator strength keeps shifting down to the 
threshold.  Clearly, one cannot claim convergence here. 
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Figure 5-7  C K edge of diamond calculated using WIEN2k+TELNES2.  A calculation without core hole 
(black) is compared with full core hole calculations of different supercell sizes : 8 atoms (red), 16 (green), 
32 (dark blue), 64 (pink), 128 (light blue) and 216 atoms (yellow).  As the core hole is introduced and the 
supercell size grows larger, the core hole keeps shifting more and more oscillator strength into the first 
peak at the threshold. 

 
 

5.e.1.2 Which core hole should one use? 
 
Generally, in a core hole calculation one removes one electron from the core state whose 
edge one is measuring.  E.g., for the C K edge, one electron is removed from the C 1s 
orbital, which then has an occupancy of 1.0 in the core hole ab initio calculation.  
However, in principle one can think of the core state occupancy (or, equivalently, the 
strength of the core hole) as a variable parameter. 
 
Specifically, people have proposed to use half a core hole (e.g., a 1.5 C 1s occupancy for 
the C K edge), the so-called Slater transition state.102  This approach ought to give correct 
transition energies, although it does not guarantee correct transition strength.  We 
illustrate it on the Cu L23 edge.119 
The Slater transition state yields excellent agreement with experiment (Figure 5-8).  Note 
also the continuous variation of the spectrum as a function of core hole strength in Figure 
5-9. 
 
 
 
 

No core hole 
Core hole in 8 atom supercell 
Core hole in 16 atom supercell 
Core hole in 32 atom supercell 
Core hole in 64 atom supercell 
Core hole in 128 atom supercell 
CCCooorrreee   hhhooollleee   iiinnn   222111666   aaatttooommm   sssuuupppeeerrrccceeellllll    
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Figure 5-8 Cu L23 edge calculated by Luitz et al. 
using WIEN2k compared to experiment 
(dots).119  Calculations using a full core hole 
(short dashes), Slater transition state (long 
dashes), and no core hole (solid) are compared to 
experiment (dots). 

 
 

Figure 5-9 Cu L23 edge calculated by Luitz et 
al.7 using WIEN2k.  The core hole fraction (i.e., 
the fraction of an electron removed from the 
initial state) is varied continuously between 0 
and 1. 

 
 
 
 
The situation gets more confusing when we look at the N K edge of GaN.86  Below we 
show the N K edge of two different phases of GaN : cubic (or zincblende) in Figure 5-11 
and hexagonal (or wurtzite) in Figure 5-10.  In both Figures, graph (a) is the experimental 
result and graph (b) the best matching theoretical WIEN2k+TELNES2 calculation.   
Surprisingly, a Slater transition state calculation produces much better results for h-GaN, 
while a full core hole calculation works much better for z-GaN. 
 
One can find a physical interpretation for this remarkable difference in terms of the 
screening of the core hole working differently in the two structures, leading to a different 
core hole strength.  The optimistic take on this study then is that comparison between 
experiment and theory can teach us something about the screening of the core hole.  The 
more critical observation is that the core hole is perhaps more of an ad hoc parameter 
than is sometimes admitted. 
 
 
 
 

Energy above Fermi [eV] 
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Figure 5-10 Comparison of experimental N-K 
edge in h-GaN and calculation with various 
parameter: (a) experiment with 0.2 eV 
resolution, collection semiangle 4.7 mrad, 
convergence semiangle, 0.2 mrad, dispersion 
0.05 eV/ch; (b) 2x2x2 supercell, 0.5 core hole; 
(c) 2x2x2 supercell, full core hole; (d) 2x2x1 
supercell, full core hole; and (e) without core 
hole. 86 

 
 

 
Figure 5-11 Comparison of experimental N-K 
edge in c-GaN and WIEN2k calculations with 
various parameters : (a) experiment with 0.2 eV 
resolution, collection semiangle 0.96 mrad, 
convergence semiangle, 0.2 mrad, dispersion 
0.05 eV/ch; (b) 2x2x2 supercell, full core hole; 
(c) 2x2x1 supercell, full core hole; (d) 2x2x2 
supercell, 0.5 core hole; and (e) without core 
hole.86 

 

 
 
I wish to discuss one last study, which in my personal opinion crosses the line between 
science and fitting.  In what I see as a “core hole a la carte” study of the N K edge and B 
K edge of hexagonal BN, Moreau et al.100 write: “We show that extremely good 
agreement [between experiment and theory] can be obtained over a 50 eV region” 
(Figure 5-12).  They achieve this agreement by calculating the π region of the spectrum 
using a full core hole, and the rest of the spectrum by using a core hole of 0.1 strength 
(i.e., a 1s occupancy of 1.9 e).  The agreement between their simulations and the 
measurements is indeed quite good. 
Physically, there’s no problem with this concept, as screening is related to the dielectric 
response and is in general frequency (or energy) dependent.  However, their approach of 
using different core hole strengths for different regions of the spectrum is not based on 
any model for frequency dependent screening, but seems completely ad hoc.  Perhaps the 
concept of the core hole supercell Final State Rule model is being dragged beyond its 
limitations here. 
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Figure 5-12 Comparison of experimental N K edge in h-BN (full line) with ELNES spectrum calculated 
using core hole strength 0.1 (dashed line).  Inset : comparison of experiment and core hole strength 1.0 
calculation in the π* region.100 

 
 
The previously mentioned FSR calculations use a fully screened core hole (i.e., a core 
hole potential fully screened

core holev or 0.5 fully screened
core holev   or  0.1 fully screened

core holev ), but other approximations 
are possible, such as the RPA screened core hole80 (i.e., a core hole potential 

1 fully screened
core holevε −  ) usually used in BSE calculations. 

 
 
We cannot reach a general conclusion about how to calculate core hole EELS using a 
supercell.  While good results are often found using a 2x2x2 supercell, there is no 
guarantee that such a simple prescription will avoid artifacts or convergence problems for 
any given system.  Also, there are no general recommendations for what type of core hole 
to use (e.g., one or one half fully screened core hole), as even for seemingly similar 
compounds a different core hole may be required. 
 
 
 

5.e.2. Results using k-space FEFF8 
 
In the previous section, we illustrated two problems with the supercell approach to core 
hole FSR calculations : convergence of the supercell size, and the type of core hole to 
use.  The “core hole without the supercell” approach presented in this dissertation (Sec. 
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5.a - 5.b), which is a combination of real space and reciprocal space Green’s function 
techniques, addresses the former issue of supercell size convergence. 
First of all, as there is no supercell, one does not need to worry about artifacts, and 
secondly, one does not need to study the computationally expensive convergence of 
larger and larger cells (cf. the carbon nanotube and the transition metal oxides). 
Also, our technique is a solution for materials which are almost impossible to converge 
with conventional calculations, such as the C K edge of diamond. 
However, we do not address the latter issue of which type of core hole to use.  Although 
we do not discuss it in this study, all the possibilities and ambiguities of partial core holes 
are possible in our new FEFF8 calculations, too.  (My personal stance on this is that it is 
best to keep ab initio calculations ab initio, and not stray from physics into fitting.) 
 
 
 
Below we show results of the “core hole without the supercell” approach for the N K 
edge of wurtzite (hexagonal) GaN.  Measurements were taken from Moreno et al.81  First, 
in Figure 5-13 we compare experiment to different types of FEFF calculations.  Although 
the real space calculations are already quite successful for simulation of this particular 
edge, it is clear that our treatment using reciprocal space and a real space core hole yields 
the best results, improving in particular the description of the feature at 405 eV loss and 
the amplitude of the edge onset at 401 eV loss.  We also notice that the full reciprocal 
space calculation (green) gives better results than a hybrid calculation (red) in which the 
potentials and scattering t-matrices were calculated in real space using a finite cluster, 
and the FMS calculation was then carried out in reciprocal space using these t-matrices.  
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Figure 5-13  N K edge of GaN at 300 keV beam energy and collection angle 0.3 mrad and convergence 
angle 0.2 mrad, measured in 100 orientation.  We compare the experiment (blue) to different FEFF 
calculations : real space calculation (pink), reciprocal space calculation (green), and a hybrid where the 
potentials were calculated in real space but the FMS calculation was done in reciprocal space (red).  
Spectra are aligned by hand and normalized at the second (403 eV) peak.  Near the onset of the spectrum, 
the red and pink curves coincide, and the green and blue curves coincide. 

 
 
Figure 5-14 shows a comparison of our reciprocal space FEFF calculations to the 
supercell approach, carried out using the WIEN2k + TELNES2 program.  Although the 
agreement between the WIEN2k and the experimental spectrum is certainly good by 
common standards, the onset is not described correctly, and it is unclear how precise the 
feature at 405 eV is reproduced in the calculation.  It is of particular interest to study the 
edge onset.  It can be seen that as the supercell grows larger, intensity slowly transfers to 
the onset, bringing it close to the correct relative amplitude (if not yet position) for the 
largest supercell we studied (4x4x3).  It is interesting to note here how the FEFF 
calculation might be seen as the convergence point of a series of calculations of 
increasing supercell size. 
 
Of course, it is not expected that the WIEN2k and FEFF calculations would coincide 
perfectly, as the physics underlying each method isn’t identical.  E.g., FEFF uses a 
complex self energy, while WIEN2k uses a real exchange correlation potential.  Also, 
WIEN2k is full potential, while FEFF uses a muffin tin potential. 
Finally, we should mention computational efficiency.  Whereas the FEFF spectrum was 
produced in of the order of 1 hour using 1 modern CPU, the WIEN2k convergence study 
took several days using multiple CPU’s on a computer cluster3, with medium size 
calculations (e.g., 2x2x2 supercell) taking hours on a dozen of processors, and the largest 
calculations (4x4x3) taking 1-2 days on half a dozen of processors. 
 

                                                 
3 Calculations were performed on the Jaws cluster at the University of Antwerp, 
consisting of 30 dual Intel Xeon and AMD Opteron nodes at 2.4-3.1 GHz clock speed 
and 3-4 GB of RAM per node. 
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Figure 5-14  N K edge of GaN in the same experimental conditions as .  The convergence of WIEN2k 
supercell size is studied and compared to a FEFF8 calculation (yellow) and experiment (black).  Spectra 
were aligned by hand and normalized to the second peak (403 eV).  The 4x4x3 spectrum ends abruptly 
because of computational limitations encountered in this very large calculation. 
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6. Conclusions 
 
 

6.a. ‘State of the simulations” for TELNES2 and FEFF 
 
In the introduction to this dissertation we stated that improvements in ab initio 
calculations of EELS spectra were needed in two ways : 
* improve the calculation of simple model systems 
* learn how to model more realistic systems. 
 
This dissertation has clearly – and, I believe, successfully – aimed to reduce the former 
problem.  One cannot hope to simulate EELS spectra of any type of material successfully 
if any important parts of the physics of EELS are missing from the theory or its practical 
implementation in a software development.  While a number of shortcomings remain to 
be remedied or need further investigation (see Sec. 6.c), I have developed improvements 
in two fundamental areas of ab initio EELS research. 
 
First, it was recently discovered by Jouffrey et al.4 that it is necessary to use a relativistic 
theory for EELS in order to obtain correct scattering properties (in casu the magic angle) 
for anisotropic materials.  I have presented the more rigorous derivation of Sorini et al.89 
of the results of Schattschneider et al.5 (Sec. 4.a).  Next, instead of making the commonly 
used small impulse transfer approximation (Sec. 4.b), I derived a full angular momentum 
based formalism for relativistic ELNES (Sec. 4.c).   This allows for arbitrary impulse 
transfer and arbitrary order of transition (i.e., dipole, quadrupole, etc.) and showed how 
this formalism connects to the theory of Schattschneider et al.  I developed a new and 
improved “TELNES2” ELNES program (Sec. 4.d) of the benchmark DFT code WIEN2k, 
based on this relativistic formalism.  I also improved the complementary real space 
multiple scattering program FEFF and implemented the contracted impulse transfer 
relativistic theory of Schattschneider et al. into it (Sec. 4.e) in terms of a cross section 
tensor.  Thus I generalized  two of the most important ELNES codes in the ab initio 
community to a relativistic formalism suitable for accurate calculations of anisotropic 
materials.   WIEN2k describes periodic systems by solving the Schrodinger equation in 
reciprocal space using DFT, finding orbitals from which to calculate the EELS cross 
section.  FEFF, on the other hand, describes arbitrary but finite systems by calculating the 
Green’s function in real space using Multiple Scattering theory.  FEFF includes a 
complex self-energy, Debye-Waller factors for thermal effects, and other features that 
make it particularly well suited for spectroscopy.  The two methods complement each 
other and both are useful for EELS research. 
 
The validity of the relativistic formalism and its implementations was shown in Sec. 4.f, 
where the magic angle problem is revisited.  The magic angle is that value of the 
collection angle (~ detector aperture) for which the orientation dependence of the EELS 
spectrum disappears, greatly simplifying the interpretation of the experiment.  The magic 
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angle is of theoretical interest because it is (in first approximation) material independent 
and therefore a direct test of the scattering theory.  I first present the non-relativistic 
prediction of the magic angle (Sec. 4.f.1) and show how measured values are vastly 
different (Sec. 4.f.2), as illustrated on the C K edge of graphite.  I rule out remedies 
within non-relativistic theory (Sec. 4.f.3), and provide analytic-numerical relativistic 
predictions in Sec. 4.f.4, in much better agreement with experiment.  Finally, the magic 
angle is calculated ab initio using TELNES2 with WIEN2k, and using FEFF (Sec. 4.f.5).  
Both methods find the correct prediction for the magic angle.  The full angular 
momentum resolved TELNES2 calculations give a magic angle almost 10% larger than 
the small impulse transfer approximated calculations (done by either FEFF or 
TELNES2), and are even closer to experimental value.  The small but quite noticeable 
shortcomings of the small impulse transfer approximation are thereby illustrated.  Also, 
beyond the somewhat abstract magic angle, we directly calculate the EELS cross section 
as a function of scattering angle using TELNES2, and compare to experimental 
measurements, finding very good agreement for the relativistic calculations (and quite 
bad disagreement for non-relativistic calculations ; see Sec. 4.f.5). 
 
The second problem I worked on is that of core hole calculations.  The excitation of the 
sample is influenced by the core hole that is created as an electron is excited from a core 
shell into an unoccupied state.  As mentioned in the introduction, I work in the Final State 
Rule, meaning that this dynamic excitation process is modeled by single particle 
calculations (using either DFT or Green’s function theory) of an excited atom with a hole 
in its core shell, embedded in an otherwise perfect and undisturbed crystal.  While the 
periodic boundary conditions (PBC) of reciprocal space band structure codes make them 
more efficient and accurate for modeling perfect crystals than real space methods, these 
PBC become a liability when a core hole is introduced and, analogous to the impurity 
problem, needs to be treated in a supercell, leading to supercell size convergence 
problems (Sec. 5.e.1.1).  This prevents us from routinely doing DFT core hole 
calculations, as convergence must always be checked and is sometimes impossible to 
achieve (e.g., for the C K edge of diamond).  Such supercell problems are completely 
absent from real space methods, as these have no PBC and therefore no supercell.  An 
additional ambiguity, which is not solved in this thesis, is that the amount of core charge 
that is removed from the core shell in a core hole calculation can be taken as ½ (a Slater 
transition state) or as a variable ad hoc screening parameter, which provides flexibility at 
the expense of clarity.  (It is seldom clear in advance which of these choices will provide 
the best spectrum.) 
 
We have developed an approach that combines the best of the real and reciprocal world 
by working out a formalism for the calculation of the Green’s function in reciprocal space 
(Sec. 5.b), very similar to impurity KKR theory.  This formalism is added onto the real 
space multiple scattering code FEFF, making it now capable of switching between real 
and reciprocal space.  Thus the perfect crystal can be treated efficiently and accurately in 
reciprocal space, and afterwards the core hole is added in real space (Sec. 5.b.1).   
Combined with the improvements described in the previous paragraph, the result is a new 
and improved FEFF code for ab initio relativistic EELS of crystals within the FSR, 
avoiding the complications and ambiguity of the supercell. 
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While more needs to be done before one can with a clear conscience turn ab initio EELS 
into black box tools, I believe that these two steps forward will present clear progress for 
the computational EELS community.  The usefulness of the relativistic formalism is 
fundamental and will never expire.  The final state rule calculations may be superseded 
by many-body theory calculations at some point, but they will likely remain the method 
of choice for some time, and the avoidance of the supercell can make FSR calculations 
more reliable and competitive. 
 

6.b. Key results 
 
Apart from the fundamental and methodological advances summarized in Sec. 6.a, a few 
results of more applied nature were obtained in this dissertation. 
 
First of all, we succeeded in calculating the magic angle of the graphite C K edge (Sec. 
4.f.4 and 4.f.5) and the angular scattering profile of the same edge (Sec. 4.f.5).  By 
avoiding the small impulse transfer approximation of the contracted impulse transfer 
formalism, we appear to have reproduced experimental results even more accurately. 
 
Using relativistic FEFF in its cross-section tensor formalism (Sec. 4.e), we show that it is 
in general not sufficient to use only the diagonal components of the tensor.  One also 
needs to take the offdiagonal terms into account to obtain the correct EELS spectrum.  
These findings mirrored a more general discussion of “cross-terms” in Sec. 4.c.3. 
 
Second, in Sec. 5.d we compared short range (real space) and long range (reciprocal 
space) calculations of the Si K edge using the new FEFF code.  In agreement with the 
general findings of the electronic structure community, our precise comparison verifies 
the equivalence expected by Schaich6 to high accuracy.  Though mostly of theoretical 
interest, this is a valuable result. 
 
Third, in Sec. 5.e.2 we apply our new “core hole EELS without the supercell” approach 
using FEFF to the N K edge of wurtzite GaN measured in 100 orientation.  Agreement 
with experiment is clearly improved over older, real space FEFF calculations.  We also 
compare to supercell core hole calculations performed with WIEN2k and TELNES2.  
Although agreement with experiment and supercell size convergence of the 
WIEN2k/TELNES2 calculations are quite good for this application, they are not as good 
as the much simpler and faster FEFF calculations.  Furthermore, the shoulder of the N K 
edge onset appears to slowly rise with increasing supercell size, allowing the 
interpretation of the “core hole without the supercell” FEFF calculations as the 
convergence point of a series of ever larger supercell calculations, where the FEFF result 
corresponds to a supercell of infinite size. 
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6.c. Outlook 
 
It’s an exciting time to be in the ab initio EELS field.  Both the theory of EELS, 
computational power, and EELS experiments have now developed sufficiently to allow 
interesting and quantitative materials science.  On the other hand, some challenges still 
remain. 
 
Much attention has been paid to many body effects in the absorption spectrum.  Time 
dependent density functional theory, Bethe-Salpeter theory, and multiplet theory have all 
produced promising results.  Which theory or combination of theories will emerge as 
most useful, and in what form, is a question that still remains to be answered, as is the 
quality that we will in the end be able to achieve using these formalisms.  It is also not 
clear how much many body theory, which is formally superior to but practically so much 
more demanding than one-particle models, is needed to improve on standard final state 
rule calculations (seeing, e.g., good results of final state rule calculations simply 
combined with multiplet calculations for some systems30). 
 
Closer to home, it will be interesting to develop more applications of the relativistic 
theory, including angle-resolved EELS measurements and the extension of the 
calculations to the low-loss regime. 
 
All this still leaves the second goal of calculating more realistic samples unaddressed. 
Increasing computational power, allowing larger basis sets and more complex 
arrangements of atoms in the calculations, are one part of the answer.  The other part 
must come from considering additional physical mechanisms present in real-life samples 
in a real microscope, ranging from finite temperature effects to considering structural 
defects, impurities and surface or sample shape effects on the spectrum ; from 
incorporating the microscope’s beam, lenses and filters into the calculations  to 
considering the interplay of elastic and inelastic scattering in crystals, which would 
require an approach based on the Mixed Dynamic Form Factor (MDFF).33  The author’s 
personal outlook is the development of a code that combines electron diffraction and 
EELS, currently a topic of interest in the community, as a next step to make ab initio 
EELS more realistic. 
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8.b.Glossary 
 
 
APW............................................................................................Augmented Plane Waves 
BSE ...............................................................................................Bethe-Salpeter equation 
(I)BZ ..................................................................... (Irreducible part of the) Brillouin Zone 
 (M)DFF.............................................................................(Mixed) Dynamic Form Factor 
DDSCS........................................................ Double Differential Scattering Cross Section 
DFT.......................................................................................... Density Functional Theory 
 (J,L)DOS.......................................................................... (Joint, Local)Density Of States 
EDX ...........................................................................................Energy Dispersive X-rays 
EELS.......................................................................... Electron Energy Loss Spectroscopy 
ELNES ...........................................................................Energy Loss Near Edge Structure 
(k,…)eV .........................................................................................(kilo-,…) electron-Volt 
EXAFS...................................................................... Extended Absorption Fine Structure 
EXELFS................................................................. EXtended Energy Loss Fine Structure 
FEG..................................................................................................... Field Emission Gun 
FMS...............................................................................................Full Multiple Scattering 
FFT.................................................................................................Fast Fourier Transform 
GGA.........................................................................Generalized Gradient Approximation 
HF(R) ..........................................................................................Hartree-Fock(-Roothaan) 
KKR ............................................................................................Korringa-Kohn-Rostoker 
KS ....................................................................................................................Kohn-Sham 
LAPW .......................................................................Linearized Augmented Plane Waves 
LCAO...................................................................Linear Combination of Atomic Orbitals 
LDA .................................................................................... Local Density Approximation 
LMTO ............................................................................... Linearized Muffin Tin Orbitals 
LO ..................................................................................................................Local Orbital 
MFP............................................................................................................Mean Free Path 
MS........................................................................................................ Multiple Scattering 
PBC.....................................................................................Periodic Boundary Conditions 
PBE(96)........... Perdew, Burke, Ernzerhof (-EXCHANGE-CORRELATION-functional) 
PE............................................................................................................... Path Expansion 
PP .............................................................................................................. PseudoPotential 
PW.................................................................................................................... Plane Wave 
STM ...............................................................................Scanning Tunnelling Microscope 
SWNT/MWNT ..................................................................Single/MultiWalled NanoTube 
TDDFT..........................................................Time-dependent Density Functional Theory 
TEM ............................................................................ Transmission Electron Microscope 
UPS ...................................................................... Ultraviolet Photoelectron Spectroscopy 
XANES ................................................................. X-ray Absorption Near Edge Structure 
XAS.................................................................................. X-ray Absorption Spectroscopy 
EXCHANGE-CORRELATION......................................................Exchange-Correlation 
XPS .............................................................................. X-ray Photoelectron Spectroscopy 
ZLP ............................................................................................................ Zero Loss Peak 
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8.c.The WIEN2k program TELNES2 
 

8.c.1. Introduction. 
 
TELNES2 is a program that calculates theoretical Electron Energy Loss Near Edge 
Spectra, taking calculated electronic structure information as input.  The central 
calculated quantity is the double differential scattering cross section (DDSCS), which is 
essentially determined by the dynamic form factor (DFF). 
The formalism implemented in the program is described in [Nelhiebel], apart from 
relativistic corrections implemented only as of the present version (11/2004). 
The current version only works as a part of the WIEN2k [ref.] package, but modifications 
to input routines will enable us to use it with other electronic structure software as well. 
 
History. 
In the beginning, there was TXSPEC (written by Joachim Luitz in 1996), which is a 
WIEN-program that calculates X-ray absorption and emission spectra.  
In 1997-1998 Pierre-Henri Louf (Inst. f. Angew. u. Techn. Physik, TU Wien) developed 
the TELNES program, meant for the calculation of core loss EELS spectra in WIEN97, 
and based on TXSPEC. 
In  1998-1999, the TELNES program was modified by Michael Nelhiebel (of the same 
group). 
The implementation of TELNES into the WIEN code and its graphical interface was 
done by Joachim Luitz. 
In 2004 Kevin Jorissen (EMAT, University of Antwerp, Belgium), J. Luitz and C. Hébert 
modified the program, added the relativistic corrections and other features, and changed 
the name to TELNES2. 
 
Contact Information. 
You are welcome to ask questions about the ELNES programs on the WIEN2k Mailing 
List (see www.wien2k.at for more information on the WIEN2k Mailing List). 
If necessary, you can contact K. Jorissen at kevin.jorissen@ua.ac.be . 
 
This document. 
This text is meant to help users understand and use the ELNES program. 
Comments, questions and error reports may be addressed to the author directly at 
kevin.jorissen@ua.ac.be . 
The TELNES2 documentation contains two parts  : 

http://www.wien2k.at/
mailto:kevin.jorissen@ua.ac.be
mailto:kevin.jorissen@ua.ac.be
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- The first part (user’s manual – this document ) is aimed at users who wish to understand 
the usage, merits and shortcomings of the program, but are not interested in technicalities 
or in changing the source code ; 
- The second part (programmer’s manual) is aimed at users who wish to adapt the 
program to their needs, or wish to understand it at a technical level. 
 
If you are simply a user, please help save some trees and don’t print the programmer’s 
manual (you can omit this page, too ;-)). 
 
 
Notations. 
In this text, the following notations will be used :  
E0      energy of the electron beam before interaction 
E        energy loss (energy transferred from beam electron to sample) 
k0       wave vector of the beam electron before scattering 
k         wave vector of the beam electron after scattering 
Q        the impulse transfer Q = k0 – k 
α         the microscope convergence semi-angle 
β         the detector collection semi-angle 
Bold symbols are vectors; their length is denoted by the same symbol (but not bold). 
 

8.c.2.  What is calculated? 
The TELNES2 program calculates the double differential scattering cross section on a 
grid of energy loss values and scattering impulse vectors. 
 
This double differential cross section is integrated to yield a (single) differential cross 
section, which is written to file.  The cross section may be differential with respect to 
energy (TELNES2 integrates over Q) or with respect to impulse transfer (ELNES 
integrates over E).  The latter case allows to study the angular behaviour of scattering. 
 
Generally, the DDSCS is given by [Nelhiebel]  
 
 
This formula takes into account the relative orientation between sample and beam.  If this 
is not necessary (because the crystal is isotropic, or the sample is polycrystalline), the 
formula may be averaged over 4π, giving a much simpler equation : 
 
 
Both equations are implemented in TELNES2. 
 
 

8.c.3.  Using the program. 
You need to do the following things : 
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* Edit case.innes and make sure all of its options are set to produce the spectrum you 
want. 
* Make sure all necessary input files are ready.  (In the following description, ‘case’ 
should always be replaced by the name of your working directory.) 
Case.struct and case.innes are always required. 
Depending on your input settings, you will require at least one of case.dos, case.xdos and 
case.qtl. 
Depending on your input settings, you may require also case.qtl, case.rotij, case.vsp, or 
additional files of which you have specified the name in case.innes 
* If you are working on the command line : run ‘x elnes’. 
   If you are working in the web browser w2web, select Tasks/ TELNES2, and click the 
corresponding button. 
* Check elnes.error and case.outputelnes to make sure that nothing unexpected has 
prevented the calculation from finishing successfully. 
* Analyze the results.  You will certainly want to look at the spectrum in case.elnes, and 
perhaps also at the partial spectra in case.sdlm and the cross term contributions in 
case.ctr. 
 
 

8.c.4.  The master input file case.innes. 
TELNES2 needs one input file that tells it what to do.  This is the case.innes – file. 
The innes-file consists of two parts : a first block with required input, and a second block 
with optional input.  In fact, the second part may be omitted altogether. 
 
The simplest input file contains only the first block, and looks like this : 
 
Graphite C K edge of first atom. 
1           (atom) 
1, 0        (n, l core) 
285       (E-Loss of 1st edge in eV) 
300  (energy of the incident electrons in keV) 
5.0  1.87   (collection semi-angle, convergence semi-angle, both in 
mrad) 
5 3  (NR, NT, defining the integration mesh in the detector 
plane) 
END 
 
This part of the file is not formatted.  This short file is sufficient to run ELNES.  Let’s 
have a look at its contents : 
 
Line number    value   explanation 
1            ‘Graphite ...’  Title  (of no consequence for the calculation) 
2            1                     Atom number as given in case.struct (the index which numbers 
inequivalent atoms) 
3            1 0                 main and orbital quantum number n and l of the core state; e.g. 1 0 
stands for 1 s 
4            285                energy of the edge onset in eV (here for the C K edge) 



 144

5            300                beam energy in keV 
6            5.0 1.87         detector collection semi-angle and microscope convergence semi-
angle in mrad 
7            5 3                 parameters NR and NT which determine the mesh used for 
sampling the distribution of Q-vectors allowed by collection and convergence angles 
8            END              keyword telling the program that there is no more input to read 
 
 
In fact there are many more parameters that specify the calculation.  In the previous 
example, default settings were used for these parameters.  They can be set by specifying a 
keyword and the corresponding value of the parameter. 
 
Our input routine is not very intelligent, so please obey the following rules : 
* start every line at the first position. 
* use only capitals for the keywords. 
* blank lines are allowed, but not lines starting with !, *, or whatever.  (As a matter of 
fact, you can insert comment lines, but only between two keys, and starting from the fifth 
column.) 
* though only the first four characters of the keyword are considered, I recommend using 
the full keyword for clarity. 
* end your input with the END keyword. 
 
Allowed keywords are : 
 
OUTPUT 
n           e.g. : 1      (default : 0) 
Specifies how much output you’ll get.  n is an integer of value 0 (only basic output; 
default), 1 (medium output) or 2 (full output, including less useful and more technical 
information). 
ATOMS 
n1 n2   e.g. : 1 3 
In case.struct, the inequivalent atom number corresponds to a class of equivalent atoms.  
Equivalent positions n1 to n2 will contribute to the spectrum (default : sum over all atoms 
in the equivalency class).  Since all equivalent atoms have identical electronic structure 
up to a symmetry operation, this will simply yield a prefactor *(n2-n1) for the orientation 
averaged spectrum, but as each equivalent atom has a different orientation with respect to 
the beam, this will change the shape of an orientation sensitive spectrum. 
ENERGY GRID 
emin estep emax  e.g. : 0.0   0.02   25.0   (default : 0 0.05 15) 
The energy grid on which the spectrum is evaluated, starting from emin and going to 
emax in steps of estep.  All values are in eV and are with respect to the Fermi energy == 
the threshold. 
DETECTOR POSITION 
θx θy                  e.g. : 0.5 0.5   (default : 0 0) 
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It is possible to place the detector not in the 000 direction but move it away from the 
incoming beam.  Consider the centre of the detector aperture as a point in a plane with the 
000 spot as its origin; then θx, θy are the Cartesian coordinates in mrad of this point. 
MODUS 
m       e.g. : a  (default is e) 
The SCS is differential with respect to energy if m=e (‘energy’) and with respect to 
impulse transfer/scattering angle if m=a (‘angles’). 
SPLIT 
splitting energy         e.g. : 2.7  
branching ratio         e.g. : 1.4 
If the initial state has an orbital quantum number larger than 0, it will generate two 
superposed edges : one corresponding to j=l-1/2, and one corresponding to j=l+1/2  (e.g., 
for the 2p initial state we have a L3 and a L2 edge).  The splitting energy sets the energy 
separation of the two edges and should be given in eV (here, L3 is at the energy specified 
in the beginning of case.innes, and L2 is 2.7 eV higher).  The branching ratio is a scaling 
factor (e.g., here the ratio of intensities L3/L2 would be set to 1.4).  By default, the 
splitting energy is calculated by the program, and the branching ratio is set to its 
statistical value of (2l+2)/2l. 
Specifying a negative value for either of the parameters restores the default behaviour. 
WRONG 
This key tells the program not to use the relativistic corrections to the scattering cross 
section.  This option allows to generate spectra identical to output of the TELNES 
program.  By default (much recommended!!), the relativistic corrections are used. 
INITIALIZATION 
make_dos  write_dos          e.g.   F F  (default : T T)   (F for false, T for true) 
make_rotation_matrices  write_r_m  e.g. T F  (default : T T) 
Elnes needs many ingredients for its calculations, and this key defines how it gets two 
ingredients : the (cross) density of states, and the rotation matrices (used for transforming 
Q-vectors from one atom to an equivalent atom).  On each line, the first entry says 
whether or not the ingredient has to be calculated (T : calculate; F : read from file), and 
the second entry says whether or not the ingredient has to be written to file (T : write; F : 
don’t write). 
If makedos=T, a file case.qtl must be present from which the dos will be calculated. 
If makedos=F, then either a file case.dos or a file case.xdos containing the (x)dos must be 
present. 
if make_r_m=T, rotation matrices will be calculated from the data in case.struct. 
If make_r_m=F, a file case.rotij containing the rotation matrices must be present. 
If write_r_m=T, a file case.rotij is written. 
If write_dos=T, a file case.dos or case.xdos will be written. 
The calculation of the rotation matrices is computationally negligible, but if orientation 
sensitive spectra are calculated, it is recommended to write the xdos to file and not 
calculate it over and over again. 
QGRID 
qmodus                    e.g. L   (U by default) 
(θ0                           e.g. 0.05   (no default value)  ) 
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A collection and convergence angle α and β allow scattering angles up to α+β and a 
corresponding set of Q-vectors (Q=k0-k).  This set (a circle of radius α+β) is sampled 
with a discrete mesh.  Three types of mesh are implemented : 
U             a uniform grid, where each Q-vector samples an equally large part of the circle.  
Sampling is performed by drawing NR circles inside the big circle, and choosing (2i-1) 
NT points on circle i, giving NR*NR*NT points in total. 
L             a logarithmic grid, with also NR circles; but now the distance between each 
circle increases exponentially.  There are (2i-1) NT points on circle i, and NR*NR*NT 
points in total.  Circle i is at radius θ0 exp ((i-1) dx), where dx depends on NR, α and β. 
1             a one dimensional logarithmic mesh; there are NR circles at exponential 
positions, and only one point on each circle (so NR points in total).  This means we 
sample a line in the detector*beam plane.  An economic way of getting spectra as a 
function of scattering angle in cases with symmetric scattering. 
The line specifying θ0 is to be omitted for the U grid. 
ORIENTATION SENSITIVE 
γ1 γ2 γ3          (e.g. 0.0  40.0  0.0)  (no default value) 
This key tells the program not to average over sample to beam orientations, but to use the 
particular sample to beam orientation defined by the three Euler angles (to be given in 
degrees).  If the ORIENTATION SENSITIVE key is not set, the program will average 
over all orientations (this is the default behaviour). 
SELECTION RULE 
type   (e.g. : q)  (default : d) 
The formula for the DDSCS contains an exponential factor in Q, which we expand using 
the Rayleigh expansion, and labelling the order of each term as lambda.  This key allows 
to keep some terms and discard others.  Possible settings for ‘type’ are : 
m  :    calculate monopole contribution only 
d   :    dipole only (this is default) 
q   :    quadrupole only 
o   :    octopole only 
n   :    no selection rule, calculate all terms 
0-9 :   all terms up to the specified value (e.g., 1 means monopole + dipole) 
Be aware that sometimes not all these terms will be available ; e.g., for a M45 edge the 
quadrupole term l=lc+2=4 is not given by the wien2k code (wien2k gives us the DOS 
only up to l=3). 
LSELECTION RULE   
type     (e.g. : q)  (default : d) 
This key does not restrict the terms in the expansion of the exponential; it limits the l-
character of the final state that is used.  E.g., for a K edge with type=d, only final states 
with p character are allowed.  There is a subtle difference between this situation and the 
common dipole approximation, though it is not expected to make much of a difference. 
 
 
 
 
Below is an example of a case.innes file containing all listed options : 
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Graphite C K edge of first atom. 
1           (atom) 
1, 0        (n, l core) 
285       (E-Loss of 1st edge in eV) 
300  (energy of the incident electrons in keV) 
5.0  1.87   (collection semi-angle, convergence semi-angle, both in 
mrad) 
5 3  (NR, NT, defining the integration mesh in the detector 
plane) 
 
OUTPUT 
2                   (full output) 
ATOMS 
1 1                 (first atom, last atom) 
ENERGY GRID 
0.0 0.05 10.0       (minimum energy, energy step, maximum energy) 
DETECTOR POSITION 
0.0 0.0             (thetax, thetay) 
MODUS 
energy              (DDSCS w.r.t. what?) 
SELECTION RULE 
n                   (selection rule) 
LSELECTION RULE 
N 
SPLIT 
3.52                (splitting energy) 
0.2                 (branching ratio) 
INITIALIZATION 
F F                 (dos and xdos handling) 
F F                 (handling of rotation matrices) 
ORIENTATION SENSITIVE 
0.0 40.0 0.0        (alfa, beta, gamma - 3 Euler angles, in degrees) 
QGRID 
U 
 
END  
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8.c.5. Files used by the TELNES2 program. 
 
For input : 
filename read if comments 
case.innes always defines calculation 
case.struct always defines crystal structure 
case.vsp core wave functions have to 

be calculated 
contains spherical 
component of the crystal 
potential 

case.rotij rotation matrices have to be 
taken from input 

contains matrices that 
transform between 
equivalent atoms 

case.dos DOS has to be taken from 
input 

contains l-resolved density 
of states 

case.xdos XDOS has to be taken from 
input 

contains l,m,l’,m’ resolved 
cross density of states 

case.qtl DOS or XDOS has to be 
calculated, or Fermi energy 
is not specified in case.innes

contains partial ‘charge’ 
components, and Fermi 
energy 

case.kgen DOS or XDOS has to be 
calculated 

contains k-mesh that 
samples the Brillouin Zone 

 
It is also possible to read core wave functions from file.  In that case the name of the 
input file is specified in case.innes. 
 
For output : 
filename written if comments 
case.outputelnes always main log file 
case.elnes always contains total spectrum 
case.sdlm verbosity > 0 contains partial (l,m) spectra
case.ctr verbosity > 0 and 

calculation is orientation 
sensitive 

contains selected (l,m,l’,m’) 
cross term contributions to 
spectrum 

elnes.error always contains error message 
case.corewavef core wave functions were 

calculated and verbosity > 1 
contains core wave 
functions 

case.final verbosity > 1 contains APW radial basis 
functions for final states at 
selected energies 

case.rotij user has asked to write 
rotation matrices 

contains matrices that 
transform between 
equivalent atoms 

case.ortho verbosity > 1 contains scalar products of 
initial and final states 
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case.matrx verbosity > 0 and spectrum 
is energy-differential 

contains proportionality 
between partial DOS and 
spectrum for each l-value 

case.cdos calculation is orientation 
sensitive.  verbosity > 1 or 
user has asked to write DOS

contains selected (l,m,l’,m’) 
cross DOS terms (l!=l’ or 
m!=m’) 

case.dos calculation is orientation 
sensitive or DOS is 
calculated ; furthermore, 
verbosity > 0 or user has 
asked to write DOS 

contains DOS, depending on 
context for every l or for 
every l,m 

case.xdos calculation is orientation 
sensitive.  verbosity > 1 or 
user has asked to write 
XDOS 

contains all XDOS 
components (not very 
suitable for human reading 
...) 

case.sp2 calculation is orientation 
sensitive, the spectrum is 
angular differential, and 
verbosity > 1 

integrated cross sections as a 
function of collection angle 
for all l-values (careful : 
possibly confusing header) 

case.angular calculation is orientation 
sensitive, the spectrum is 
angular differential, and 
verbosity > 1 

differential cross section as a 
function of scattering angle 
for all l-values (careful : 
possibly confusing header) 

 
 
 
 

8.c.6.  Practical considerations. 
Most of the options are self-explanatory, and the user should just pick those that suit his 
purposes. 
Some points are worth making : 
* Especially for orientation sensitive calculations, the calculation of the (X)DOS takes a 
lot of time.  Although for safety reasons calculations of the (X)DOS is default, the user 
can save a lot of time by calculating this once for a sufficient energy range, saving it to 
file, and from then on use the INITIALIZATION option to read (X)DOS from file. 
* I recommend to prepare a suitable dos/xdos file after finishing the self consistency 
calculation, so that vector files and/or qtl files do not have to be stored (they take a lot of 
disk space!) or recalculated (this may require several hours for large calculations).  Make 
sure that the energy mesh is fine enough and extends up to sufficiently high energy.  The 
dos-files can be compressed to save even more disk space. 
* The parameters NR and NT are the only input variables that do not have a physical 
meaning.  They are simply the number of points used for evaluating an integral 
numerically.  They have to be converged by the user, and we do not provide ‘reasonable 
default values’. 
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* It is still possible not to use the relativistic corrections.  However, this is provided for 
testing and for compatibility reasons only.  This feature should *not* be used for real 
work. 
 
 
 

8.c.7.  Compatibility with TELNES. 
* The TELNES2 program is incompatible with its predecessor, TELNES.  Input files and 
DOS files for TELNES will not work for TELNES.2  Also the format of input DOS has 
changed.  When switching to TELNES,2 you have to change case.innes and recalculate 
DOS. 
When switching off relativistic corrections and matching input options correctly, 
TELNES2 spectra should be identical to TELNES spectra. 
 
 
 
 

8.c.8. Major differences with respect to the previous 
release (i.e., TELNES). 

 
* The old F-option does not exist anymore (it was meant for orientation sensitive edges in 
high symmetry crystals, and could save some time compared to the current 
implementation).  The current ‘averaged’ and ‘orientation sensitive’ modes correspond to 
old N and H calculations, respectively. 
* The limited MDFF-functionality of TELNES has been removed. 
* The feature to calculate several spectra for different detector positions with just one call 
has been removed.  The simplest shell script can do the same thing, wasting only a small 
amount of computing time and producing much better output. 
* Relativistic corrections to the scattering cross section are added. 
* Spectra can now be given either as a function of energy or as a function of impulse 
transfer / scattering angle. 
* Core wave functions can now be read from file. 
* Fermi energy can be specified in case.innes, thus removing the need for case.qtl once 
the DOS is calculated, which may save considerable disk space. 
* Splitting energy between j=l+1/2 and l-1/2 edge can be calculated by the program. 
* Rotation matrices and Bravais matrix can be calculated by the program. 
* Selection rules can be imposed in a more straightforward way.  Contributions 
(monopole, dipole, ...) can be separated more easily. 
* Branching ratio can be specified in the input. 
* New formula for integration over collection and convergence angle which does not 
consider them to be equivalent anymore (switching them multiplies the complete 
spectrum by a constant). 
* The mesh of Q-vectors can now be chosen in three ways  : uniform mesh (as in 
TELNES), logarithmic mesh, or one-dimensional logarithmic mesh.  This gives more 
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efficient sampling for angular resolved spectra that are to be integrated (most of the 
intensity is concentrated in the low scattering angle region). 
* XDOS is stored in just one file instead of a hundred messy fort.?? files. 
* DOS is stored in case.dos, not case.dos1 or case.dos1ev.  This prevents overwriting of 
previously calculated density of states using the tetra program. 
* Output has been restructured.  A switch allows to control the amount of output.  All 
debugging output has been removed, saving the user several useless MB of disk space.  
As a rule, all output is useful. 
* Input has been restructured.  Use of default values allows for a very compact input file, 
to which advanced users may add keywords for more advanced options. 
* The calculation of density of states has been integrated into the program.  Calls like ‘x 
initelnes, x tetra, x telnes’ are no longer necessary.  One ‘x elnes’ will do. 
* Broadening has to be done afterwards by a separate program. 
* Better documentation ;-). 
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8.c.9. Programmer’s Guide. 
 
 

8.c.9.1 Style. 
TELNES2 is programmed in Fortran90. 
We use dynamical data allocation.  Although most arrays exist are never deallocated, this 
saves memory because the arrays are not larger than strictly necessary.  Also, there is no 
more need for annoying param.inc files containing compilation time constants for array 
sizes, which depending on the environment may give errors or rubbish when these sizes 
are exceeded at runtime. 
Variables are grouped into modules (which also contain the corresponding allocation 
routines) made available by use statements in program units.  Contrarily to the common 
block approach of TELNES, variables are therefore only accessible in the routines where 
they are necessary, which increases safety. 
No implicit type declaration is used (i.e., implicit none statements are used everywhere). 
Unnecessary variables and statements have been removed from most parts of the 
program. 
 
 
Some parts of the program have escaped these strict rules : 
* old and rather incomprehensible parts, especially some imported lcore routines, which 
work, and would be very tough to rewrite properly (hfsd and insld have been reworked, 
though); 
* some imported tetra routines, which have not been touched mainly to make it easy to 
keep them compatible with the standalone tetra program (which may very well be subject 
to changes in the future). 
 
Instructions to open files are governed by a definition file (given to the program as 
command line argument; typically elnes.def).  Error messages are passed to an error file 
(whose name is based on that of the definition file; typically elnes.error). 
 
So far, the program has been compiled and run on only two platforms : 
* MS Windows XP + Compaq Visual Fortran 5.0 
* Linux Redhat 7.3 +  Intel Fortran Compiler 7.1-8 
In the first configuration I have (in the first executable statements of the main routine in 
telnes.f) replaced the call to gtfnam by explicit definition of the definition and error file, 
and increased the stack size. 
 
 

8.c.9.2 Description of all program units. 
 
(Included in the software distribution.) 
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8.d.  The FEFF8 EELS program. 
 
1. Introduction 
 
In dipole approximation, XAS and EELS are almost the same, so it is only natural to use 
a code like FEFF for EELS, too.  The necessary changes to make this possible were 
implemented in this version of the FEFF code (FEFF 8.5).  More precisely : 
* XAS spectra are converted to EELS spectra (different energy-dependence of the cross-
section) 
* Relevant experimental parameters can be used as input – e.g., beam energy, collection 
angle, etc. 
* We add relativistic effects [Schattschneider] to the cross section, which is currently of 
much interest in the EELS community. 
 
We stay true to the FEFF tradition of making the calculation easy on the user : one input 
file (“feff.inp”), one command to run the program (“feff”).  True to the concept of ab 
initio computation, we want only structural information and experiment parameters as 
input. 
So, FEFF 8.5 calculations of EELS spectra will proceed very much like XAS calculations 
with older versions.  The only difference is that you will use specific input CARDs for 
EELS (described in section 2) and that you will see new files in your calculation 
directory (see section 4). 
 
Throughout this document, it is assumed that you are somewhat familiar with the basics 
of FEFF, and that you have access to a FEFF user’s guide.  Together with the program 
and this document, you should have received an example input file feff.inp for the 
calculation of the C K edge of graphite. 
If you are a beginning FEFF user and want to avoid confusion over advanced details, you 
can start by reading sections 2.1, 2.3 (first paragraph only), 3.1, 4.2, and 8. 
 
 
2. How to do EELS – input and the EELS cards. 
 
FEFF has a very user-friendly setup.  There is one input file, feff.inp, in which you 
specify the system of interest and what you wish to calculate for this system.  The FEFF 
user’s guide explains how to use CARD’s for this purpose.  Below we describe the new 
cards for EELS. 
Just like the XAS spectrum is divided into a near-edge region (XANES) and an extended 
region (EXAFS) for every core edge in the spectrum, EELS spectra have ELNES (near 
edge structure) and EXELFS (extended structure).  The two regions generally need to be 
computed in a different way, and therefore each has its own input card. 
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2.1. The ELNES card. 
To tell the code to calculate EELS, and give it all relevant parameters, you need to add 
either the ELNES card or the EXELFS card to your feff.inp input file.  The first line of 
those cards contains the same parameters as the XANES resp. the EXAFS card, and the 
next lines contain additional information.  For ELNES, it looks like this : 
 
 
ELNES [xkmax  xkstep vixan] 
E   [aver [cross [relat]]] # beam energy in keV; optional parameters 
[kx ky kz     # beam direction in the crystal frame] 
β α          # collection semi-angle, convergence semi-angle (in mrad) 
nr na        # q-integration mesh : radial size, angular size 
dx dy        # position of the detector (x,y angle in mrad) 
 
The parameters between square brackets are optional.  For EXELFS, it looks like this : 
 
EXELFS xkmax 
E   [aver [cross [relat]]] # beam energy in keV; optional parameters 
[kx ky kz     # beam direction in the crystal frame] 
β α          # collection semi-angle, convergence semi-angle (in mrad) 
nr na        # q-integration mesh : radial size, angular size 
dx dy        # position of the detector (x,y angle in mrad) 
 
Meaning of these parameters : 
xkmax  maximal k-value for the calculation 
xkstep  step size of the upper part of the k-mesh 
vixan  step size of the lower part of the k-mesh 
aver  1 to calculate orientation averaged spectrum (e.g. polycrystalline sample, 
working at magic angle …) ; 0 to use specific sample to beam orientation (default); 
cross  1 to use cross terms for the cross section (e.g. xy or yx ; default); 0 to use 
only direct terms (e.g., atom coordinates entered in symmetric coordinate frame ; 
assumed as default if aver is set to 1); 
relat  1 to use relativistic formula for the cross-section (default and always 
recommended) ; 0 to use non-relativistic formula (for checking against old results ; does 
not save any time!); 
E  energy of the electron beam in keV (typical values are 100-400 keV); 
kx,ky,kz wave vector k of the incoming electron in the crystal frame (i.e., the 
Cartesian coordinate system in which the atom positions of the ATOMS card are given) ; 
in arbitrary units (only the direction, not the size of k is used) and to be omitted if aver is 
set to 1; 
β  the collection semi-angle of the EELS detector in mrad (typical values are 
of the order of 1 mrad); 
α  the convergence semi-angle of the incoming beam in mrad (typical values 
are of the order of 1 mrad); 
nr, na  the cross section is integrated over the values of the impulse transfer 
vector q = k – k’  allowed by α and β ; the integration grid consists of nr concentric 
circles sampling a disc of radius α + β ; circle i contains na * (2i-1) points, making for 
nr*nr*na points in total (this is a non-physical parameter and should be converged ; 
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typical would be, e.g., 5,2 ; the integration is quite fast ; only for small values of nr is it 
necessary to increase na above 1); 
dx,dy  the position of the detector in the scattering plane, specified by angles in 
mrad along x and y axis (the same as used in the ATOMS card) (typical values are 0.0, 
0.0). 
 
Xkmax, xkstep and vixan are exactly the same parameters as those used for XANES and 
EXAFS cards, and described in the FEFF user’s guide. 
The line giving beam orientation (kx,ky,kz) should only be present when an orientation 
sensitive spectrum is calculated.  If an orientation averaged spectrum is to be calculated, 
that line should be omitted (or commented out). 
 
As an example : 
ELNES  # calculate elnes. 
300          # beam energy in keV 
0 1 0        # beam direction in the crystal frame 
2.4 0.0      # collection semi-angle, convergence semi-angle (in mrad) 
5 3          # q-integration mesh : radial size, angular size 
0.0 0.0      # position of the detector (x,y angle in mrad) 
simulates an experiment with a 300 keV beam hitting the sample along the y-axis.  The 
detector is set in the forward direction and has a 2.4 mrad (semi-)opening ; the width of 
the incoming beam is 0 mrad.  To do the integration over the detector aperture, 5*5*3=75 
points are used.  The calculation is relativistic and takes sample to beam orientation into 
account.  Default settings are used for the energy/k – mesh. 
 
Another example : 
EXELFS 25    # calculate exelfs. 
200 1 0      # beam energy in keV 
0.4 0.5      # collection semi-angle, convergence semi-angle (in mrad) 
10 1         # q-integration mesh : radial size, angular size 
0.0 0.0      # position of the detector (x,y angle in mrad) 
simulates an experiment with a 200 keV beam and an orientation averaged calculation 
(say the sample is isotropic).  The detector is set in the forward direction (last line) and 
has a 0.4 mrad (semi-)opening ; the width of the incoming beam is 0.5 mrad.  To do the 
integration over the detector aperture, 10*10*1=100 points are used.  The calculation is 
relativistic and averages over sample to beam orientation.  No cross terms are calculated 
(this option – the “0” on the second line could have been omitted, as it is the default for 
orientation averaged calculations).  We use an energy grid up to k = 25 Ǻ-1. 
 
 
2.2 Other EELS related cards. 
Currently, there is only one additional new card : the MAGIC card. 
 
MAGIC 20     # create a plot that shows the sp² ratio at 20 eV above 
threshold. 
 
The MAGIC card makes the code calculate cross sections as a function of collection 
angle at a particular energy loss.  So, in addition to the energy-resolved output produced 
by the EELS card, the MAGIC card produces angle-resolved output. 
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The name MAGIC was chosen because the output of this card enables one to find the 
magic angle for a material very quickly : run the code for two different orientations, and 
see where the sp² - curves cross.  This gives you the magic collection angle for the 
collection angle and EELS edge chosen in feff.inp. 
 
 
2.3 Using traditional FEFF cards for EELS calculations. 
* The EELS calculations use the machinery that is at the heart of FEFF to calculate 
spectra: either full multiple scattering, or path expansion (or both).  So, the cards that we 
reviewed above must be combined with the appropriate card telling FEFF which of its 
algorithms to use. 
For near edge structure (ELNES) we use : 
 
FMS 7.0 
ELNES … 
 
to use the full multiple scattering. 
For extended structure (EXELFS) one must use : 
 
RPATH 8.0 
EXELFS … 
 
to use the path expansion. 
 
Of course, the arguments of the FMS and RPATH cards may be set to different values 
than those given here.  Additionally, one can specify other cards in the feff.inp file – see 
the FEFF user’s guide for an exhaustive description. 
Here, we only discuss a few issues relevant to EELS calculations in FEFF 8.5. 
 
* For EELS calculations, the polarization vector is an internal variable that is set by the 
code itself.  Therefore, the POLARIZATION card cannot be used.  If the card is present, 
the code should give a warning and ignore it. 
Similarly, the beam direction is given by the input parameters of an ELNES/EXELFS 
card.  It is not allowed to use the ELLIPTICITY card when an EELS card is present.  
Again, if it is used, the code should complain and ignore it. 
 
* One should obviously not combine ELNES or EXELFS with the XANES or EXAFS 
cards. 
 
* The FPRIME and DANES cards are expected to work in combination with an 
ELNES/EXELFS card.  However, it is not clear what the resulting output in eels.dat 
should mean.  The combination of, say, DANES and ELNES could be used as a way of 
obtaining DANES for all polarizations with a single calculation, though, if one uses the 
xmu.dat-files produced by such a calculation (and ignores the probably meaningless 
eels.dat).  (Note : please put the DANES card after the ELNES card, and make sure first 
lines of both cards are identical.) 
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* The CONTROL and PRINT cards do not have an additional field for the EELS module.  
Execution of the EELS module is governed by the presence of an ELNES/EXELFS card 
in feff.inp (or, on a lower level, by the corresponding switch in eels.inp).  The output 
level can not be modified at this time, except through the MAGIC card. 
 
 
3. How to do ELNES – running the code. 
 
3.1 A full run. 
Prepare the feff.inp file as described in section 2, and run feff!  If you address the 
modules individually, then do not forget to add module eels to your calling sequence.  A 
full calculation should consist of the steps 
rdinp 
pot 
screen 
xsph 
ldos 
fms 
path 
genfmt 
ff2x 
so2conv 
eels 
Your installation contains a script ‘feff’ so that you can run this whole sequence by just 
giving the command feff.  The modules so2conv and screen and ldos are optional.   
 
3.2 Changing something. 
If you change something in the calculation of the material properties – such as atom 
positions, or the FMS radius … - you need to rerun all the traditional modules of FEFF 
(i.e., the whole sequence described above). 
 
If you change from orientation averaged to orientation sensitive calculation, or from an 
orientation sensitive calculation without cross terms to one with cross terms, then you 
need to rerun rdinp and the sequence from fms until eels. 
 
If you only change an experimental parameter – i.e., most of the parameters in the EELS 
and MAGIC cards – then you only have to rerun module eels, which is very fast (fast 
enough to couple it to fitting software, if you like).  To do this, you either : 
* change the ELNES/EXELFS card in feff.inp, run rdinp, run eels ; 
* change the ELNES/EXELFS card and put CONTROL to 0 0 0 0 0 0 in feff.inp, and run 
feff 
* edit eels.inp directly – but beware, this is a formatted file! – and run eels 
 
 
4.3 Different behaviour. 
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When the EELS card is present, certain modules will behave different from what you’re 
used to.  Module fms will take a little longer, repeat some of its output, and produce a 
larger output file.  Module path will take longer and produce more output files.  Same 
goes for module genfmt and module ff2x. 
 
All in all, the time increase should be quite modest, since most of the time goes into 1/ 
calculating self-consistent potentials in module 1, which is not affected at all ; and, 2/ 
inverting the matrix for FMS, which is still done only once – only the post processing in 
module fms takes longer. 
A test on an ELNES calculation for a 100 atom FMS cluster in graphite showed 
negligible computation time increase compared to the corresponding XANES calculation 
(2 seconds longer on a total of about 9 minutes). 
 
The basic novelty is in the treatment of the polarization.  In non-EELS calculations, FEFF 
takes a polarization from the input (POLARIZATION and ELLIPTICITY cards), sets up 
a specific polarization matrix for this experimental situation, and calculates one 
corresponding spectrum.  For EELS, however, we calculate a spectrum for every element 
of the polarization tensor (xx, xy, xz, yz, yy, …, zz).  This gives us the whole absorption 
tensor (which is symmetric and has six independent components).   The main 
computational effort is in setting up that tensor (modules rdinp through so2conv).  Now, 
an EELS spectrum can be calculated in a second or less for specific experimental 
conditions (collection angle, orientation, beam energy, …). 
A standard EELS calculation computes the whole absorption tensor.  However, if the user 
asks for an orientation averaged calculation, only one element (corresponding to the 
trace) is calculated ; and if the user chooses not to have any cross terms, only xx, yy, and 
zz elements of the absorption tensor are calculated. 
This explains the remarks made in section 4.2. 
 
A last important difference to old calculations is that we disable the normalization of the 
spectrum at 50 eV above threshold.  This was often annoying when several spectra need 
to be combined. 
 
 
4. How to do EELS – files. 
 
4.1 Input files. 
* The file feff.inp contains all parameters related to EELS calculation and is the preferred 
way for non-expert users to set those parameters.  After each change, module rdinp must 
be run to update eels.inp. 
* The file eels.inp is read by the EELS module eels and determines what the code will 
actually do.  Expert users can tweak this file directly.  Basically, the file contains 
everything that’s in the EELS and MAGIC cards.  Of particular interest is the very first 
parameter, which determines whether eels is executed (=1) or not (=0), and also the 
parameters on the next line, which select the components (1-9) of the sigma tensor that 
will be calculated. 
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These parameters are very important because other modules will check for the presence 
of the eels.inp file and the values of these parameters to determine their course of action!  
People who have done EELS and then want to do something else in the same working 
directory may want to set the execution switch to 0 (or comment the EELS card in 
feff.inp and rerun module rdinp, which amounts to the same) to make sure none of the 
other modules bother about doing something special for EELS. 
 
4.2 Output files. 
* The file eels.dat contains the EELS spectrum.  Its first column contains energy loss in 
eV, the second column the total spectrum, and the next columns contain the contribution 
to the total spectrum from each of the nine components of the cross section tensor. 
* The file magic.dat is only written if the MAGIC card is present in feff.inp (and the 
corresponding switch is set to 1 in eels.inp).  It contains the collection angle in rad, the pi 
to sigma ratio, the pi and sigma components of the spectrum, and the total spectrum ; all 
as a function of collection angle, evaluated at the energy loss set by the MAGIC card.  
Caution : this has not been tested in the presence of cross terms.  E-mail the author in 
case of doubt. 
* The file logeels.dat contains reports on the execution of the program.  In particular, it 
contains a summary of the input options used.  Most of the information in the file is also 
written to the screen during program execution. 
 
4.3 Files of other modules. 
Modules xsph, fms, path, genfmt, ff2x and so2conv are affected by the presence of an 
active eels.inp file and may behave accordingly : 
4.3.1. Module 2 (ffmod2 or XSPH). 
If an ELNES/EXELFS card is present, xsph sets the polarization tensor to the unit matrix 
before proceeding.  A message is written to log2.dat. 
4.3.2 Module 3 (ffmod3 or FMS). 
If an ELNES/EXELFS card is present, fms adds to fms.bin all the requested components 
of the sigma tensor instead of just one.  This is fully compatible with non-EELS 
calculations. 
4.3.3 Module 4 (ffmod4 or PATH). 
For each polarization component, a separate list.dat file is written (i.e., list.dat, list02.dat, 
etc.).  The format of the files is unchanged. 
4.3.4 Module 5 (ffmod5 or GENFMT). 
For each polarization component, the corresponding listnn.dat is written and a separate 
feff.bin file is written (i.e., feff.bin, feff02.bin, etc.).  The format of the files is 
unchanged. 
4.3.5. Module 6 (ffmod6 or FF2X). 
The module reads the large fms.bin and all the feffnn.bin files, and produces a xmunn.dat 
file containing the corresponding component of the sigma tensor (xmu.dat, xmu02.dat, 
…, xmu09.dat).  Those files have the traditional xmu.dat – format.  Similarly, chinn.dat – 
files are produced. 
4.3.6 Module 8 (SO2CONV). 
Again, a loop over all components of the sigma tensor : each xmu.dat file is opened and 
altered individually. 
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5. Guarantees? 
 
This is a new software development.  As such, bugs and various annoying little (or big) 
problems may occur.  Contact the author if necessary. 
 
The code was mostly tested for ELNES calculations on Linux pc’s with the Ifort 
compiler.  We believe it should also work on other systems.  However, if you experience 
problems, or if you are unsure about an EXELFS calculation, I encourage you to contact 
the author. 
 
Compatibility with the use of other input cards and with files from older FEFF versions 
has been attempted, but may not have been achieved in all cases.  Please report problems. 
 
 
6. Compilation : 
 
* If you have received a single file, just compile it as you always have. 
* If you have received a small number of files, one for each module, you compile them as 
usual, but now do one extra module.  That is, you’ll receive a file eels_tot.f that should be 
compiled to an executable eels. 
* If you have received a whole directory tree with lots and lots of files, there should be a 
Makefile in which you can set compilation parameters (most importantly, the name of 
your compiler).  Do this and run “make”. 
 
The source code for the eels module contains some fortran90.  If you do not have a 
fortran90 compiler, you can obtain a fortran77 compatible version from us.  
Alternatively, if you have received the version with the Makefile (item #3 in the above 
list), you can set the parameter EELSDIR in the Makefile (to ‘EELS’ for f90, and to 
‘EELS77’ for f77). 
 
If you experience any problems, we’d appreciate your feedback and the opportunity to 
help you out. 
 
 
7. Programming details in a nutshell. 
 
A separate Programmer’s Guide is available in the documentation of your FEFF 8.5 
distribution.  Here is a concise summary. 
 
A central quantity in FEFF is the polarization tensor (ptz).  In regular FEFF calculations, 
it is calculated from the polarization vector e (evec in the code) and the beam direction k 
(xivec in the code), and then the spectrum corresponding to that physical situation is 
calculated.  Ptz is processed internally. 
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For EELS calculations, we want access to all 9 polarizations (6 of which are 
independent), giving us 9 partial spectra that we can sum, with weights depending on 
experimental conditions, to very quickly (as sample information is precomputed into 
those 9 components) assemble a physical EELS spectrum. 
The modifications to the code fall into three categories : 
- minor things, such as adding new cards, according to FEFF tradition ; 
- modifying existing routines that handle the polarization tensor so that the full tensor is 
preserved ; 
- adding a new module, called eels, for calculating the spectrum out of the 9 partial 
spectra. 
More details on implementation are available in a separate Programmer’s guide. 
 
 
 
8. Questions?  Remarks?  Bugs? 
 
Once more : let me know!  kevin.jorissen@ua.ac.be 
 
 
9. References. 
 
* Relativistic Electron Energy Loss Spectra calculated in the Real Space Multiple 
Scattering approach, K. Jorissen, J.J. Rehr.  In preparation. 
This paper will be the official reference for EELS calculations with FEFF. 
 
* Practical aspects of electron energy-loss spectroscopy (EELS) calculations using 
FEFF8  
M.S. Moreno, K. Jorissen and J.J. Rehr, Micron, 2006.  (review article - in print) 
This paper contains practical hints on how to use FEFF8.2 for EELS calculations. 
 
* Real-Space multiple-scattering calculation and interpretation of x-ray-absorption near-
edge structure, A.L. Ankudinov, B. Ravel, J.J. Rehr, S.D. Conradson, Phys. Rev. B 58 
(12) 7565, 1998. 
The main reference for FEFF8. 
 
* Anisotropic relativistic cross sections for inelastic electron scattering, and the magic 
angle, P. Schattschneider, C. Hébert, H. Franco, B. Jouffrey, Phys. Rev. B 72 045142, 
2005. 
A good reference for relativistic EELS theory. 
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If you are not on the FEFF development team, it is highly unlikely that you will ever 
need the information contained in this document.  Please save a tree and don’t print 
this! 
 
It is assumed throughout this document that the reader is familiar with the contents and 
notations of the accompanying User’s guide and the FEFF User’s guide. 
 
 
1. General comments. 
A central quantity in FEFF is the polarization tensor (ptz).  In regular FEFF calculations, 
it is calculated from the polarization vector e (evec in the code) and the beam direction k 
(xivec in the code), and then the spectrum corresponding to that physical situation is 
calculated.  Ptz is processed internally. 
For EELS calculations, we want access to all 9 polarizations (6 of which are 
independent), giving us 9 partial spectra that we can sum, with weights depending on 
experimental conditions, to very quickly (as sample information is precomputed into 
those 9 components) assemble a physical EELS spectrum.  This means that all elements 
of the code where a specific value for ptz, evec or xivec is used need to be looped over 
(ptz) or circumvented (evec and xivec). 
 
The modifications to the code fall into three categories : 
- minor things, such as adding new cards, according to FEFF tradition ; 
- modifying existing routines that handle the polarization tensor so that the full tensor is 
preserved ; 
- adding a new module, called eels, for calculating the spectrum out of the 9 partial 
spectra. 
 
It is important to realize that all modules except pot, ldos, and screen have been 
modified and will adapt their behaviour in the presence of active EELS input!!  This is 
because “inner loops” in the code (with substantial changes) allow for much faster 
calculations than “outer loops” (with no substantial changes). 
It is the intention of the author to mention every modified routine explicitly in this 
document. 
 
2. Module 0 (RDINP or ffmod0). 
* This module now accommodates new cards and variables and a new output file.  
Changing the coordinate system has been disabled in EELS calculations. 
* New cards ELNES, EXELFS and MAGIC have been added, with internal codes 54, 56 
and 55, respectively.  To this purpose, relevant blocks of code were added to rdinp and 
itoken (in src/COMMON).  Since the ELNES and EXELFS card takes several lines of 
input from the feff.inp file, a new ‘reading mode’  mode=4 was added in rdinp. 
A new common block /elnes/ defined in allinp.h contains the new variables of the 
ELNES/EXELFS and MAGIC card. 
* ELNES is very similar to XANES; the parameters on the first line of the card are 
exactly the same.  Similarly, EXELFS incorporates the EXAFS card.  I have ‘absorbed’ 
the relevant variables because it seems confusing to have to use both ELNES and 
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XANES cards in one file – quod non, now.  On the other hand, the calculation of ELNES 
invokes essentially the same routines as that of XANES, so that I have not attributed a 
new ispec number to elnes and exelfs calculations.  Apart from a loop or two, the 
difference is mainly cosmetic until we reach the eels module. 
* Iniall sets the elnes variables to defaults that essentially mean : don’t calculate eels, do 
traditional x-ray feff. 
Rdinp has new card consistency checks : it tries to avoid combinations of ELNES and 
POLARIZATION or ELLIPTICITY, and it ignores MAGIC if ELNES is not present.  It 
also checks consistency of the control switches aver, cross and elnes, and sets the 
important parameters ipmin,ipmax,ipstep depending on the control switches.  The ip 
parameters determine which components of the sigma tensor are calculated. 
Ffsort has a new input argument : a logical switch doptz which disables the call to mkptz 
if eels is active.  This is because 1/ mkptz is not necessary : the polarization tensor will be 
set later ; and 2/ because rotation of the atom coordinates in mkptz may interfere with the 
existence of off-diagonal sigma tensor components and the desired interpretation of the 
spectrum in terms of its components in a particular basis. 
Wrtall writes the eels parameters to the file eels.inp.  All other files retain their exact 
traditional format.  Note that global.dat will contain some unset variables (in particular 
the ptz matrix) in case eels is active. 
 
3. Module POT. 
No changes at all. 
 
4. Module SCREEN. 
No changes at all. 
 
5. Module XSPH. 
* Minor change : explicit setting of the polarization tensor is necessary for EELS 
calculations for strictly practical reasons. 
* Rexsph checks for the presence of a eels.inp file with meels=1 (i.e., an active eels.inp 
file).  If it finds this, it sets the polarization matrix ptz – which was read earlier from 
global.dat – to 1/3.  This is necessary, since in case of eels rdinp has not set the 
polarization matrix, and okay, since for xsph only the trace of ptz matters.  A message is 
written to the log file. 
 
6. Module LDOS. 
No changes at all. 
 
7. Module FMS. 
* This module has been changed significantly.  Instead of summing over the components 
of the polarization tensor internally, it now calculates a spectrum for each component 
separately, and outputs all those (9) spectra to its output file fms.bin. 
* Reafms looks for an active eels.inp file (eels=1).  If it finds one, it takes the parameters 
ipmin, ipstep, ipmax from that file.  If not, it sets them all to 1.  The variables 
elnes,ipmin,ipstep,ipmax are returned as output parameters. 
Ffmod3 passes them on to fmstot. 
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Fmstot calls bcoef several times to set up the bmat matrix for every polarization 
considered (do ip=ipmin,ipmax,ipstep).  If (eels=1), each call to bcoef is preceded by a 
call to iniptz, a new routine that sets the polarization matrix and can work either in 
Cartesian or in spherical coordinates (current settings use a Cartesian representation) ; if 
(eels=0), the value read from global.dat in reafms is used.  The bmat’s are stored in a 
supermatrix bmat0, which is one dimension larger.  Then inside the big loop over energy, 
the matrix inversion is done only once (as for xas) by calling fms.  Now there is a loop 
over the section where gg (inverted matrix from fms) is formed into gtr (the output of 
ffmod3) by applying bmat.  This loop over polarization tensor components selects the 
right bmat from bmat0, calculates, and puts the result in gtr – which has an extra 
dimension in the new code : gtr(ip, E).  The MPI instructions for gathering pieces of gtr 
have been modified (but not tested!) to accommodate this extra dimension.  The full gtr 
matrix is written to fms.bin in a consistent way (i.e., if ipmin=ipmax=1 it has the exact 
same format and content as in a xas calculation). 
 
8. Module 4 (PATH or ffmod4). 
* Most eels calculations require the absorption tensor for every polarization component 
and for every sample to beam orientation.  I am not sure how this influences the selection 
of paths.  I fear this may prohibit use of any symmetry and it may be necessary to use 
icase=7 for orientation sensitive calculations in mpprmp until further testing has been 
done. 
* Repath looks for an active eels.inp-file (eels=1).  It passes eels on to ffmod4, then to 
pathsd, then to timrep.  If eels=1, timrep initializes a variable icase to 7 ; if eels=0, it puts 
it to -1.  This variable is a new input parameter to mpprmp, which uses it to override its 
own decision procedure for icase if between 1 and 7. 
  
9. Module GENFMT. 
* Regenf looks for an active eels.inp file (eels=1).  If it finds one, it takes the parameters 
ipmin, ipstep, ipmax from that file.  If not, it sets them all to 1.  The variables 
elnes,ipmin,ipstep,ipmax are returned as output parameters. 
Ffmod5 passes them on to genfmt. 
Practically all of genfmt (except for the reading of phase.bin in rdxsph) is contained 
within a loop over the components of the polarization tensor (do ip=ipmin,ipmax,ipstep).  
For every ip-value, a file feff_ip.bin and list_ip.dat is written – except for ip=1, where the 
filenames are simply feff.bin and list.dat for compatibility reasons.  If (eels=1), iniptz is 
called (see module 3) to set the polarization tensor ptz to the desired value determined by 
ip ; if not, the value read from global.dat by regenf is used.  The polarization tensor is 
passed on to mmtr, which will eventually call bcoef to create a bmat matrix. 
 
10. Module FF2X. 
* This module has been looped over the components of the sigma tensor ; it needs to read 
input and write output for every component separately. 
* Reff2x looks for an active eels.inp file (eels=1).  If it finds one, it takes the parameters 
ipmin, ipstep, ipmax from that file.  If not, it sets them all to 1.  The variables 
elnes,ipmin,ipstep,ipmax are returned as output parameters. 
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Ffmod6 passes them on to ff2xmu (called for ispec=1 (XANES/ELNES) and ispec=2 
(XES)) or ff2chi (called for ispec=0 (EXAFS/EXE/FS)) or ff2afs (called for ispec=3 
(DANES) and ispec=4 (FPRIME)). 
In ff2xmu, a new variable gtrful (and temporary buffer gtrtemp) has been created to 
enable reading the enlarged fms.bin file written by module3.  The code will work fine for 
old fms.bin files.  Much of ff2xmu (after reading xsect.bin) has been looped over the 
components of the sigma tensor (do iip=ipmin,ipmax,ipstep – the variable ip has another 
meaning in this routine!).  The component of gtrful corresponding to iip is copied into 
gtr, and the corresponding feff_iip.bin is read.  Because direct components (e.g. xx) 
should have the atomic background, but off-diagonal components (e.g. xy) should not, 
instead of xsec (read from xsect.bin) I use the variable kxsec which is equal to xsec for 
diagonal components and is 0 for offdiagonal components.  The resulting spectrum – a x-
ray spectrum! – is written to xmu_iip.dat (for iip=1, we use ‘xmu.dat’ for compatibility 
reasons). 
In ff2chi, a similar approach is followed.  Since fms.bin is not read in this routine, we do 
not need new gtr-related variables.  Again, most of the code is looped over.  We now 
need to read list_iip.dat in addition to the files mentioned earlier.  As the variable omega 
(read from xsect.bin) is recycled in the code (why keep things clear?), I read it again in 
each cycle.  The same trick with kxsec and xsec is performed.  An additional output file 
chi_iip.dat is written. 
In ff2afs, again the same thing is done. 
 
10. Module SO2CONV. 
* Checks for active eels.inp file.  If present, the whole code loops over the polarization 
tensor (do ip=ipmin,ipstep,ipmax).  Each xmu.dat file is read and overwritten 
individually. 
 
11. Module EELS. 
* Completely new module, separate from existing code. 
* Description to be provided later. 
 
 
12. Other source directories.  
COMMON : function itoken is adapted to accommodate the new cards ELNES, EXELFS 
and MAGIC. 
ATOM, DEBYE, EXCH, FOVRG, HEADERS, LIB, MATH, PAR, SCREEN, TDLDA, 
Utility : No changes at all. 
 
13. Programming conventions. 
* In existing routines, my aim has been to make as little conceptual modifications as 
possible.  This means that sometimes a routine will not be the shortest possible, or there 
may be some redundancy in variables ; but its ‘spirit’ will be conserved as much as 
possible, so that someone who knew the old version of the routine won’t have too much 
trouble getting used to the new version. 
* In existing routines, every line that I change bears my initials in a comment !KJ , 
sometimes followed by an explanation.  When a block of new code is inserted, it will be 



 166

preceded and followed by !KJ.  If significant changes are made to an instruction, the old 
version is often preserved as a comment. 
* In new routines, the implicit none statement is always used.  In existing routines, all 
new variables (including the index i etc.) are declared explicitly.  Always. 
* No old-fashioned coding!  This means avoiding line numbers, goto statements, and 
other encryption techniques. 
* In the new module eels, some f90 is used.  We also have a f77 version. 
 
 
 

situation eels aver cross ipmin ipstep ipmax ip ptz 
XAS 0 / / 1 1 1 1 as given by 

POLA and 
ELLI cards 

EELS, orientation 
averaged 

1 1 0 10 1 10 10 1/3 * I 

EELS, orientation 
averaged, 
symmetric 
coordinates 

1 0 0 1 4 9 1, 5, 9 xx, yy, zz 

EELS, orientation 
averaged, general 
coordinates 

1 0 1 1 1 9 1, 2, 3, 4, 5, 
6, 7, 8, 9 

xx, yy, zz, 
xy, yx, xz, 
zx, yz, zy 

Table 1 : values of some important EELS variables for several physical situations. 
 
 
ip Carth. name polarization tensor 
1 xx  1  0 -1 

 0  0  0    * 1/2 
-1  0  1 

2 xy -1  0 -1 
 0  0  0    * i/2 
 1  0  1 

3 xz  0  1  0 
 0  0  0    * 1/sqrt(2) 
 0 -1  0 

4 yx  1  0 -1 
 0  0  0    * i/2 
 1  0 -1 

5 yy  1  0  1 
 0  0  0    * 1/2 
 1  0  1 

6 yz  0 -1  0 
 0  0  0    * i/sqrt(2) 
 0 -1  0 

7 zx  0  0  0 
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 1  0 -1    * 1/sqrt(2) 
 0  0  0 

8 zy  0  0  0 
 1  0  1    * i/sqrt(2) 
 0  0  0 

9 zz  0  0  0 
 0  1  0 
 0  0  0 

10 average  1  0  0 
 0  1  0    * 1/3 
 0  0  1 

Table 2 : Cartesian components of the polarization tensor expressed in FEFF’s spherical 
basis, as implemented in routine iniptz. 
 
 
 
 
 

8.e.  The FEFF8 k-space program. 
 
 
The reciprocal space, impurity-KKR-like FEFF8.6 code works just like regular FEFF : 
i.e., there’s a single input file feff.inp that contains all input variables, and it’s sufficient 
to run a single command ‘feff’ to run the program.  All the new functionality is 
implemented through a handful of new input CARD’s, consisting of a keyword and some 
numerical values, which are briefly described below.  The main difference, from the point 
of view of the user, is that in order to use the reciprocal space calculations, the system is 
specified in terms of a unit cell with lattice vectors and a basis of atoms in the unit cell, 
instead of a real space cluster.  We will describe how to do this below. 
 
If the RECIPROCAL card is used, then the LATTICE, ATOMS, KMESH and MARKER 
cards are mandatory.  All others are optional. 
 
 
 
 
 
RECIPROCAL 
This card tells FEFF to work in reciprocal space.  It affects modules pot, xsph, fms and 
ldos. 
 
REAL 
This card tells FEFF to work in real space. 
 
KMESH  nkp usesym symfile 
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This card specifies the mesh of k-vectors used to sample the full Brillouin Zone for the 
evaluation of Brillouin Zone integrals.  Nkp is the number of points used in the full zone.  
If usesym = 1, the zone is reduced to its irreducible wedge using the symmetry options 
specified in file symfile, which must be present in the working directory.   The k-mesh is 
constructed using the tetrahedron of Bloechl et al., Phys. Rev. B, 1990. 
 
LATTICE type scale 
Ax ay az 
Bx by bz 
Cx cy cz 
This card specifies the lattice.  First, its type must be specified using a single letter : P for 
primitive, F for face centered cubic, I for body centered cubic, H for hexagonal.  The 
following three lines give the three basis vectors in Carthesian Angstrom coordinates.  
They are multiplied by scale (e.g., 0.529 to convert from bohr to Angstrom) 
 
ATOMS  n 
X1 y1 z1 pot1 
.... 
xn yn zn potn 
This card specifies the real space cluster if one uses real space calculations.  However, it 
specifies the atoms in the unit cell if one uses reciprocal space calculations.   The unit cell 
itself was defined in the LATTICE card.  Here, each atom is defined by three coordinates 
and its potential index.  (The POTENTIALS card works just the same for real and 
reciprocal space calculations.)  There are n atoms in the unit cell.  One can use the 
COORDINATES card to specify the units in which the coordinates are given. 
 
COORDINATES i 
i must be an integer from 1 through 6.  It specifies the units of the atoms of the unit cell 
given in the ATOMS card for reciprocal space calculations.    If the card is omitted, the 
default is assumed. 
1 : Cartesian coordinates, Angstrom units.  Like FEFF – you can copy from a real space 
feff.inp file provided that your LATTICE vectors coincide with atoms in that feff.inp file. 
2 : Cartesian coordinates, fractional units (i.e., fractions of the lattice vectors ; should be 
numbers between 0 and 1).  Similar to FEFF. 
3 : Cartesian coordinates, units are fractional with respect to FIRST lattice vector.  Like 
SPRKKR. 
4 : Given in lattice coordinates, in fractional units.  Like WIEN2k (but beware of some 
‘funny’ lattice types, e.g. rhombohedral, in WIEN2k case.struct in case you’re copy-
pasting …) 
5 : Given in lattice coordinates, units are fractional with respect to FIRST lattice vector. 
6 : Given in lattice coordinates, Angstrom units. 
 
E.g., say that you have entered a diamond system as : 
LATTICE P 6.0 
0.0 0.5 0.5 
0.5 0.0 0.5 
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0.5 0.5 0.0 
Now you want to enter the atoms : 
ATOMS 2 
0.0 0.0 0.0   (always right – COORDINATES 1 through 6) 
1.5 1.5 1.5 (COORDINATES 1 or 6) 
0.25 0.25 0.25 (COORDINATES 2, 3, 4, or 5) 
 
 
MARKER ic 
Specifies the location of the absorber atom for reciprocal space calculations – it’s entry ic 
of the ATOMS card.  The marker needs to be specified also for NOHOLE calculations. 
 
NOHOLE ih 
This card works the same for real and reciprocal space calculations.  One can use either 
ih = 0 (no core hole) or ih=2 (Yoshi’s screened core hole), or omit the NOHOLE card 
(regular core hole).  However, if one uses a reciprocal space calculation, then the 
recommended way to do a core hole calculation is to use NOHOLE 2, as it is best not to 
have a core hole in the pot module! 
Alternatively, one can use a regular core hole (no NOHOLE card) and run the pot module 
with reci set to 0 in reciprocal.inp, and afterwards (i.e., before running fms) reset reci to 1 
to do that part of the code in reciprocal space.  For the test case of GaN, better results 
were obtained using NOHOLE 2, though. 
 
SGROUP ngroup 
This card specifies the space group of the crystal (number from 1 through 230).  
Currently not active. 
 
STRFAC  eta gmax rmax 
This card gives three non-physical internal parameters for the calculation of the KKR 
structure factors : the Ewald parameter and a multiplicative cutoff factor for sums over 
reciprocal (gmax) and real space (rmax) sums.  Multiplicative means the code makes a 
‘smart’ guess of a cutoff radius, but if one suspects something fishy is going on, one can 
here e.g. use gmax=2 to multiply this guess by 2.  Eta is an absolute number. 
In the cases tested so far, it was not necessary to use this card.  Its use is not 
recommended. 
 
BANDSTRUCTURE 
This card activates the module that calculates and prints out bandstructure.  Not active yet 
since the bandstructure module isn’t ready! 
 
 
THE FILE RECIPROCAL.INP 
This file contains all the parameters described in the abovementioned cards, plus one or 
two extra that are experimental and not described here.  It can always be edited by hand.  
It affects modules pot, xsph, ldos, and fms.  Beware of making changes in between 
modules – it’s not always wrong, but one has to know what one’s doing. 
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The main switch is the first parameter (all are clearly labeled in the file) reci : if it’s set to 
0, the calculation will be done in real space and all the parameters following it are 
ignored.  If it’s set to 1, the calculation is done in reciprocal space, and all the parameters 
following it are read and used. 
Apart from this, all other *.inp files are the same as they were in FEFF8.5 . 
 
OUTPUT 
The output of reciprocal space calculations is fairly indistinguishable from real space 
calculations, except that a file containing the k-mesh is printed, and some minor 
intermediate output may be present in the log-files. 
 
USING A PARTIAL CORE HOLE 
There are some variables in the reciprocal.inp file pertaining to partial core hole 
calculations (e.g., Slater transition state).  However, these types of calculations are still 
experimental, and no-one except developers should touch these options for the moment. 
 
CONVERGING THE K-MESH 
Essentially all parameters that need to be entered for reciprocal space calculations are 
physical parameters, with one important exception : the number of k-points in the k-
mesh.  This parameter simply needs to be converged.  Although it is impossible to give a 
general guideline, often starting with 1000 k-points is a good idea for fairly simple and 
small unit cells.  Generally, the number of points scales inversely with the volume of the 
unit cell.  Some systems require more points than others – one always needs to check.  
Also, the more broadened the property of interest (e.g. ELNES as opposed to DOS), the 
less points are necessary.  Also, the near edge structure requires more points, whereas 
more extended structure (e.g., 50-70 eV above threshold) is often converged with even 
just a few k-points. 
 
EXELFS 
For extended loss structure (i.e., upwards from 50-100 eV), the real space Path Expansion 
method is so well tested and efficient that I do not see the point in trying to reformulate it 
in reciprocal space.  Therefore, it is always done in real space. 
If the RECIPROCAL card is active (and the crystal is specified using LATTICE and unit 
cell ATOMS card), then the rdinp module will generate a real-space cluster based on the 
information of the LATTICE and ATOMS cards, and the value of the RPATH value.  
This cluster will be written to the atoms.dat file.  The spectrum will then be calculated 
using the path and genfmt modules, which haven’t been reprogrammed and work in real 
space. 
 
PROGRAM STRUCTURE 
Much of the new programming is contained in a separate source folder “KSPACE” that 
compiles into a kspace library included in the Makefile of other source folders.  However, 
several other source folders also contain a few files that are used only for reciprocal space 
calculations.   The new routines are all programmed using f90 syntax, and the relevant 
variables are organized in modules.   It may be instructive for the FEFF developer to 
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check out these src/KSPACE/modules*.f files, which have comment lines describing 
almost all variables. 
Also, existing routines have been modified.  Usually, these modifications were minimal 
and the original structure of the routines have been preserved as much as possible. 
Generally, a module will open the reciprocal.inp file in its “read input” routine to figure 
out which space we’re in.  If that’s real space, the calculation will proceed exactly as it 
always has. 
Next, the initialization routines will call a dedicated kspace initialization routine if 
necessary (e.g., routine kprep), which sets up the k-mesh and prepares objects for the 
calculation of KKR structure constants. 
Then, inside the main energy loop of pot, ldos, xsph and fms, the following structure is 
found : 
If (reciprocal space) 
   Call fmskspace 
Else  (i.e., real space) 
   Call fms 
Endif 
Where fms and fmskspace produce equivalent output, e.g. a Green’s function in real 
space.  All the k-space is hidden inside fmskspace. 
The main outputs of all modules – pot.bin, xsect.bin, ldos.dat, fms.bin – has not been 
changed since FEFF8.5. 
 
 
USING CRYSTAL SYMMETRY 
Symmetry could be used in two ways : 

• reduce the k-mesh 
• reduce the Green’s function L,L’ matrix 

 
The first of these is currently implemented, HOWEVER!  The extent to which symmetry 
can be used depends on what one is calculating.  E.g., to calculate the diagonal parts of 
G_LL’, one can reduce the k-mesh and just sum all the contributions from inequivalent k-
vectors.  BUT for the offdiagonal components (which are needed in order to add the core 
hole, if any), symmetry is more subtle and one needs to add all the equivalent ones, 
which can be somewhat shortcut by reconstructing them from the inequivalent ones 
through unitary transformations dictated by symmetry elements of the crystal.  Whereas 
the first strategy would yield a speedup ~ 48 for diamond, the gain for the latter strategy 
is much more modest ( ~ 5?) and dependent on the size of the matrices, i.e. the number of 
atoms in the unit cell. 
 
So, while a number of symmetry strategies are implemented in the code, it is currently 
recommended to test these cautiously on a smaller k-mesh before relying on them.  
Contact the author in case of doubt. 
 
The second item – LL’ symmetry within the G matrix – has not been implemented in any 
way. 
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SPEED 
Generally, fms is the module that takes longest. 
In real space, for every energy point one matrix inversion of order 
nclus*(lmax+1)**2*nsp 
In reciprocal space, for every energy point nkp matrix inversions of order 
nu*(lmax+1)**2*nsp 
Where nu is the number of atoms in the unit cell, nkp the number of k-vectors in the 
mesh, nclus the number of atoms in the real space cluster, lmax the angular momentum 
cutoff, nsp the number of spins (1 or 2). 
So, the relative speed is something like (nu/nclus)^a * nkp , where a is the scaling of 
matrix inversion. 
In general, unit cells with more atoms (nu) are larger and therefore require less k-vectors 
(nkp).  However, I don’t have a general idea of speed.  Obviously, for very small systems 
(1-5 atoms in the unit cell), RECIPROCAL is faster.  For larger systems, more study is 
needed. 
Also, it’s worth noting that pot sometimes seems to get quite slow in reciprocal space. 
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