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Abstract

Using the recently developed method we calculate the crystal field parameters in yttrium and lutetium

aluminum garnets doped with seven trivalent Kramers rare-earth ions. We then insert calculated parameters

into the atomic-like Hamiltonian taking into account the electron-electron, spin-orbit and Zeeman interac-

tions and determine the multiplet splitting by the crystal field as well as magnetic ĝ tensors. We compare

calculated results with available experimental data.
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I. INTRODUCTION

To explain certain optical and magnetic properties of rare-earth (R) materials, determination of

crystal field parameters (CFP) is essential. When sufficient experimental data are available CFP are

usually determined by the least squares fit. Since the number of nonzero CFP depends on the site

symmetry and may be as high as 27, such method often ends up being ambiguous. As a result, there

has been a continuous effort to estimate CFP theoretically (for the review of various methods, see

Ref. [1, 2]).

Recently, a novel theoretical approach to calculate CFP has been proposed [3]. An original mo-

tivation of the work was to explain the magnetic properties of rare-earth cobaltites RCoO3 where

available experimental data do not suffice to estimate CFP. The method starts with the density

functional theory (DFT) based band structure calculation, followed by a transformation of the Bloch

to Wannier basis. The local Hamiltonian is then expanded in terms of the spherical tensor operators.

Resulting CFP are inserted in an atomic-like Hamiltonian involving the crystal field, 4f−4f correla-

tion, spin-orbit coupling and Zeeman interaction. The method does not suffer from the 4f electron

self-interaction (the difficult problem of DFT ab initio methods). The hybridization of the 4f states

with other valence orbitals is taken into account via hybridization parameter ∆, a single parameter

of the method. In the recent paper [4] a relatively simple way allowing to estimate this parameter

was suggested and applied to the R:LaF3 system.

The method has been extensively tested for rare-earth doped aluminates YAlO3:R
3+ with or-

thorhombic perovskite structure [3]. Remarkable agreement of calculated and experimental data was

achieved. Application to gallates RGaO3 and cobaltites RCoO3 [5] as well as manganites RMnO3 [6]

followed. Even in these cases calculations provide a fair agreement with available experimental data.

Rare-earth doped aluminum garnets are widely used as laser materials and scintillators due to

which extensive experimental data are available. In recent years magneto-optical properties of some

non-Kramers ions in garnet hosts have been studied. High magneto-optical activity observed in

some cases is of interest in microwave amplifiers and generators. Magnetooptics of Tb3+ and Tm3+

in Y3Al5O12 (YAG) is studied in Refs. 7, 8 and Ref. 9, respectively. Magnetooptics of Eu3+ in

various garnets is reported in Refs. 10, 11 and that of Pr3+ in YAG in Ref. 12.

In this work we apply the new CFP method to rare-earth doped aluminum garnets. After reviewing

the theory and computational procedure, the next section is devoted to analysis of the problem of

determination of the parameter ∆ in more detail compared to Ref. 4. In the following section we

calculate crystals field parameters. We show examples of multiplet splitting by the crystal field. We
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focus on Kramers ions and calculation of their magnetic g factors, yet more crystal-field sensitive

quantities, and compare them with experimental data.

II. THEORETICAL APPROACH AND COMPUTATIONAL DETAILS

The effective Hamiltonian describing 4f states can be written as

Ĥeff = ĤA + ĤZ + ĤCF , (1)

where ĤA is the spherically symmetric, free ion atomic-like Hamiltonian (for details see Ref. 13),

while ĤZ and ĤCF are the Zeeman interaction and crystal field Hamiltonian, respectively. In the

Wybourne notation [14] ĤCF has the form

ĤCF =
∑

k=2,4,6

k∑
q=−k

B(k)
q Ĉ(k)

q , (2)

where Ĉ
(k)
q is a spherical tensor operator of rank k acting on the 4f electrons of the R ion. The

coefficients B
(k)
q are the crystal field parameters. Hermiticity of ĤCF requires that (B

(k)
−q )∗ = (−1)qBk

q .

Calculation of crystal field parameters consists of four steps:

1. Standard selfconsistent band calculation with 4f states included in the core. The results yield

the crystal field potential, subsequently used in the next step.

2. The 4f as well as oxygen 2p and 2s states are treated as the valence states in a nonselfconsistent

calculation, all other states are moved away using the orbital shift operator. Relative position

of 4f and oxygen states is adjusted using the hybridization parameter ∆ (a single parameter of

the method).

3. The 4f band states are transformed to Wannier basis using the wien2wannier [15] and wan-

nier90 [16] packages.

4. Local 4f Hamiltonian in the Wannier basis is extracted and expanded in a series of spherical

tensor operators. The coefficients of expansion are the crystal field parameters.

To perform the band structure calculations in steps 1 and 2 we used the WIEN2k package [17]

with implemented augmented plane waves + local orbital method. For the exchange correlation

functional we applied the generalized-gradient approximation form [18]. We used experimental lattice

parameters of Y3Al5O12 (YAG) and Lu3Al5O12 (LuAG) [19], but the atomic positions within the
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unit cell were optimized for each R substitution by minimizing the atomic forces. The unit cell

in our calculations consisted of 80 atoms. The eigenvalue problem was solved in five points of

the irreducible Brillouin zone and the number of basis functions was ∼ 7700 (corresponding to the

parameter RKmax=6.5). The calculations were non-spin polarized. The atomic radii of R (Y,Lu),

Al and O were 2.3, 1.7 and 1.55, respectively.

Once the crystal field parameters were determined we used the modified lanthanide package [20]

to solve the eigenproblem for the Hamiltonian (1). The results provide the multiplet splitting by the

the crystal field. From the energy dependence on external magnetic field one extracts the ĝ tensor

(for more details see Refs. 3, 5).

III. HYBRIDIZATION PARAMETER

The parameter ∆ appears due to hybridization between the rare-earth 4f states and the valence

states of its ligands. Our treatment of hybridization is briefly described in Ref. 3. In the R

containing orthorhombic perovskites [3, 5, 6] remarkable agreement between experimentally obtained

spectroscopic data and the calculation was obtained by fixing the value of ∆ at 0.6 Ry. With the same

∆ also the magnetism was calculated and compared with experiment. However, less experimental

data were available and the agreement, though still satisfactory, was not as good as in case of

spectroscopy. In R:LaF3 very good agreement between optical data and calculation was obtained for

∆ = 0.4 Ry [4] . In the same paper ∆ was estimated using a charge transfer energy

∆ ' Etot(4f
(n+1), Nval − 1)− Etot(4f

n, Nval), (3)

where Etot(4f
n, Nval) is the total energy of the ground state of the system (n4f electrons in 4f shell of

R ion and Nval electrons in the valence band), while Etot(4f
(n+1), Nval−1) corresponds to the excited

state in which one of the valence electrons was transferred in the 4f electron shell. The hybridization

parameter thus can be calculated by performing two calculations with 4f electrons treated as the

core states - the first one with 4fn, Nval, the second with 4f (n+1), Nval − 1 electron configurations.

Using the above equation we calculated ∆ for the R in question in both YAG and LuAG. The

results, together with the data for R:LaF3 and orthorhombic perovskites RMnO3, are shown in Fig. 1.

There are several problems connected with the above method. The first one is connected with the

multiplet splitting of the 4f levels, which is not provided by the DFT calculation. In principle this

splitting may be obtained by the atomic-like program, we are using. However, there is a problem of

double counting of the electron-electron correlation, which would be difficult to overcome. We can
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FIG. 1: Dependence of the hybridization parameter ∆ on number of the 4f electrons calculated using eq.

3. Dashed and dash-and-dotted lines correspond to the ∆ values, which were adopted for calculations in

RMnO3 and R:LaF3, respectively [4, 6].

only estimate that corresponding uncertainty of ∆ is on the order of the crystal field splitting i.e.

less than ∼ 0.1 eV and it will change with R. Such scatter will become relatively more important in

R:YAG and R:LuAG compared to R:LaF3 and RMnO3, because ∆ calculated from (3) is smaller in

garnets (cf. Fig. 1).

The second problem is inherent to the open core calculations. Even though the 4f electrons are

well localized, small part of their density leaks out of the R atomic sphere. Understandably, this

leakage is bigger for the 4f (n+1) electron configuration. For R:LuAG we calculated ∆ for three values

of the atomic sphere radius RMT . The result is shown in Fig. 2.

Finally, note that eq. (3) is based on the first order perturbation theory [3], thus higher order

correction is needed if the hybridization is important.

IV. RESULTS

A. CFP and multiplet splitting

Yttrium (Lutetium) aluminum garnets have a cubic structure belonging to the Ia3d space group.

The unit cell contains eight molecular units Y3Al5O12 (YAG) or Lu3Al5O12(LuAG). The R impurities
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FIG. 2: R:LuAG. Hybridization parameter calculated for three values of the atomic sphere radius RMT .

are located on dodecahedrally coordinated Y (Lu) sites of D2 symmetry, and nine real parameters

are necessary to characterize the crystal field. For the dodecahedral sites, there are six possible

coordinate system orientations, which result in six different (but spectroscopically indistinguishable)

crystal field parametrizations. The coordinate system to which our CFP and ĝ tensors are referred

is shown in Fig. 3.

The magnitude of parameter ∆ entering the calculation in the second step was varied between

2.7-10.9 eV (0.2-0.8 Ry) with the step 1.36 eV (0.1 Ry). As ∆ decreases, the 4f levels get closer to

the valence band, for ∆ = 2.7 eV the calculation becomes less stable for lighter R and it crashes for

Er and Yb. Similarly as in orthorhombic perovskites [3, 5, 6] and LaF3 [4] for fixed ∆ the CFP change

smoothly with the number of 4f electrons. In Fig. 4 this is documented for ∆=5.4 eV and YAG.

As a function of the hybridization parameter, CFP also change smoothly. An example for Sm:YAG

is displayed in Fig. 5. The CFP for both YAG and LuAG and all seven R are collected in Table

IV A. They were calculated taking ∆=5.4 eV, which is the lowest value for which the calculation

runs smoothly for all R.

With the knowledge of CFP, modified program ’lanthanide’ [20] was used to calculate the energy

levels. Parameters of the free ion Hamiltonian were taken from Ref. 13. The agreement between

theory and experiment is generally fairly good. Three examples, namely Nd3+, Sm3+ and Er3+ in

YAG are shown in Figs. 6, 7, 8. For lighter R the position of energy levels only slightly depends on
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FIG. 3: YAG structure with the highlighted dodecahedrally coordinated site. Axes a and b are parallel to

[11̄0] and [110] directions, axis c is parallel to [001] direction.

the hybridization parameter, for heavier R the dependence becomes stronger [5].

B. ĝ tensors

Axes a, b, c of the system are principal axes of ĝ. In the experiment components ga, gb, gc are usually

determined by analysis of the dependence of EPR spectra on the direction of external magnetic field.

There are two sites R1, R2 with the c axis running along the [001] direction. Axes a1, b1, are parallel

to [11̄0] and [110], respectively. Axes a2, b2 are obtained from a1, b1 by a π/2 rotation around c.

This leads to an ambiguity in assessment of ga, gb to R1, R2 sites [24]. On the other hand, in the

calculation the assessment is unambiguous and it refers to the R site shown in Fig. 3.

To determine ĝ the effective Hamiltonian (1) was diagonalized with gradually increasing external

magnetic field B. Resulting dependence of energies was then expanded up to the second power of B.
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FIG. 4: YAG. CFP as a function of the number of 4f electrons for hybridization parameter ∆=5.4 eV.
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FIG. 5: Sm:YAG. CFP as a function of the hybridization parameter ∆.
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TABLE I: Crystal field parameters (in meV) in R:YAG and R:LuAG calculated for hybridization parameter

∆=5.4 eV.

k q Ce:YAG Nd:YAG Sm:YAG Gd:YAG Dy:YAG Er:YAG Yb:YAG

2 0 -21.2 32.8 37.0 52.4 67.4 113.1 72.2

2 2 -46.6 -28.7 -23.8 -14.4 -5.6 15.4 2.1

4 0 -5.6 -5.8 -1.1 -5.8 -8.6 -22.9 -3.0

4 2 313.8 253.9 223.2 206.3 193.1 183.8 163.6

4 4 -203.9 -161.9 -139.5 -125.7 -114.4 -87.3 -88.0

6 0 -250.8 -228.2 -203.9 -193.4 -192.4 -207.8 -188.3

6 2 63.0 77.9 73.8 71.1 75.2 93.4 80.4

6 4 142.4 114.9 102.4 94.6 88.5 68.3 67.1

6 6 147.5 108.8 95.2 86.2 75.8 54.1 53.9

Ce:LuAG Nd:LuAG Sm:LuAG Gd:LuAG Dy:LuAG Er:LuAG Yb:LuAG

2 0 -36.3 22.7 33.8 43.7 52.2 80.9 77.1

2 2 -33.0 -20.4 -14.2 -9.1 -3.5 18.8 17.8

4 0 4.6 1.9 -2.1 -2.0 -1.8 -28.9 -27.1

4 2 320.4 255.8 209.1 184.5 165.6 188.6 164.5

4 4 -207.8 -165.1 -132.0 -114.5 -105.3 -97.1 -83.6

6 0 -252.2 -229.1 -197.8 -178.8 -169.6 -210.4 -185.5

6 2 67.6 81.3 73.9 68.8 68.3 79.1 69.0

6 4 141.7 118.7 97.0 84.7 78.5 71.9 60.9

6 6 148.8 109.0 89.6 75.9 66.2 57.8 50.5

The linear term provides ĝ. Comparing to energies in the zero-field, ĝ is much more susceptible to

parameters of the calculation, in particular to ∆. In Figs. 9-15 the dependence ĝ(∆) is shown for all

R in YAG and LuAG. As mentioned above, for small ∆ the calculations become unreliable, which

results in fluctuations in ĝ(∆) dependence. The calculation for ∆ = 5.4 eV and R:YAG, R:LuAG is

compared with the experiment in Tables II and III.
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FIG. 6: Nd:YAG. Splitting of the lowest ten multiplets by the crystal field. The solid line is only to guide the

eye. The lowest energy of the j-th multiplet (j=1,...,10) for calculated (experimental) results was reduced by

0(0), 255(248), 495(489), 722(714), 1452(1418), 1567(1533), 1694(1656), 1851(1813), 1999(1952), 2020(2088)

meV, respectively. Experimental data were taken from Ref. 21.

V. DISCUSSION

As seen in Fig. 1, the hybridization parameter ∆ for R impurities in YAG and LuAG comes out

smaller than in manganites and LaF3. This represents a serious obstacle when trying to get the best

CFP, as for ∆ smaller than ' 4 eV the calculation does not always yield reliable results. We traced

the problem to the wannier90 package. Calculation with wannier90 provides the maximally localized

Wannier functions, but it does not guarantee that they will be centered on the crystal site of the R

impurity. Indeed, for ∆ ' 4 eV the functions are displaced for heavier R and for still smaller ∆ the

displacement appears for all R. As a consequence the symmetry is lost, all CFP are nonzero and

for q 6= 0 they are complex. A possible remedy may be to use recently proposed scheme by Sakuma

[32] (symmetry adapted Wannier functions) or simpler, but less sophisticated method of selectively

localized Wannier functions [33].

Despite the problem with ∆ the agreement between calculated and experimental multiplet splitting

is very good as shown in Figs. 6,7,8. We found similar agreement also for other garnet systems.

In the past the CFP of the R impurities in garnets were determined several times using either

semiempirical methods or the least squares fit to the optical data. Prominent groups that adopted this
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FIG. 7: Sm:YAG. Splitting of the lowest ten multiplets by the crystal field. The solid line is only to guide the

eye. The lowest energy of the j-th multiplet (j=1,...,10) was reduced for calculated (experimental) results

by 0(0), 129(126), 284(279), 446(440), 609(603), 768(761), 909(813), 1017(831), 1164(833), 1331(848) meV,

respectively. Experimental data were taken from Ref. 22.

TABLE II: ĝ tensor components of the ground Kramers doublets along principal axes in YAG:R3+ calculated

for hybridization parameter ∆=5.4 eV, except for Er where ∆=4.8 eV. Experimental data refer to the work

listed in the last column. Difference in per cent between calculated and experimental values is reported

R ga gb gc Ref.

calc. exp. diff. calc. exp. diff. calc. exp. diff.

Ce 1.06 0.91 16 2.54 1.87 36 2.32 2.74 15 [25]

Nd 2.16 1.74 24 1.74 1.16 50 3.52 3.91 10 [27]

Sm 0.59 — — 0.13 — — 0.02 — — —

Gd 1.82 1.99 9 1.82 1.99 9 2.43 1.99 22 [31]

Dy 0.07 0.40 83 0.30 0.73 59 18.9 18.2 4 [28]

Er 8.41 7.75 9 3.77 3.71 2 7.50 7.35 2 [28]

Yb 3.97 3.78 5 3.83 3.87 1 2.52 2.47 2 [29]
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FIG. 8: Er:YAG. Splitting of the lowest ten multiplets by the crystal field. The solid line is only to guide the

eye. The lowest energy of the j-th multiplet (j=1,...,10) for calculated (experimental) results was reduced

by 0(0), 812(812), 1271(1272), 1525(1525), 1895(1896), 2280(2281), 2367(2370), 2543(2543), 2755(2755),

2801(2803) meV, respectively. Experimental data were taken from Ref. 23.
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Experimental data (enlarged symbols on the left side) are taken from Refs. 24, 27.
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Experimental data are not available.
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TABLE III: ĝ tensor components of the ground Kramers doublets along principal axes in LuAG:R3+ cal-

culated for hybridization parameter ∆=5.4 eV, except for Er where ∆=4.8 eV. Experimental data refer to

the work listed in the last column. Difference in per cent between calculated and experimental values is

reported

R ga gb gc Ref.

calc. exp. diff. calc. exp. diff. calc. exp. diff

Ce 1.23 0.92 13 2.33 1.87 25 2.25 2.61 14 [26]

Nd 2.20 1.79 23 1.79 1.24 44 3.45 3.83 10 [24]

Sm 0.65 — — 0.14 — — 0.002 — — —

Gd 1.88 — — 1.81 — — 2.37 — — —

Dy 0.55 2.29 76 0.11 0.91 88 18.74 16.6 13 [28]

Er 6.87 4.12 67 4.01 8.43 52 8.66 6.93 25 [28]

Yb 3.83 3.82 0.3 4.02 3.72 8 2.48 2.57 4 [30]

approach are those of Gruber and Burdick, which obtained rich optical data and carefully analyzed

them using the least squares fit. In Table IV we compare our CFP with those obtained by these

groups for Nd:YAG [21], Sm:YAG [22] and Er:YAG [23].

When considering B
(k)
q one should be aware of the fact that the spectroscopic methods do not
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FIG. 13: Dy:YAG, LuAG. Principal components of ĝ as a function of the hybridization parameter ∆.

Experimental data (enlarged symbols on the left side) are taken from Ref. 28.
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Experimental data (enlarged symbols on the left side) are taken from Refs. 29, 30.

differentiate between the six crystallographically equivalent R sites which, however, have different

local coordinate system. The local coordinate systems are connected by symmetry operations of the

Ia3d space group and to compare different sets of CFP corresponding symmetry operation has to be

applied (see e.g. Refs. 23, 34).

In Table IV are also compared the quantities Sk, which were introduced by Leavitt [35] and which

are invariant with respect to the rotation of the coordinate system:

Sk =

[
1

2k + 1

k∑
q=−k

|B(k)
q |2

]1/2

. (4)

We now turn to the magnetism, which is more susceptible to the values of CFP compared to the

energies in the zero magnetic field. Despite this sensitivity and the above mentioned problem with ∆

smaller than 4 eV, the calculated ĝ tensors qualitatively reflect the experimental data. The method

will be thus particularly useful for magnetic, nontransparent rare-earth compounds, in which the

experimental data do not allow determination of the crystal field.

Our approach is relatively simple, it may be used by non specialists and corresponding programs,

as well as the test example, are available on the WIEN2k web site (www.wien2k.at).
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TABLE IV: Comparison of CFP and the rotational invariants Sk obtained in this paper and CFP obtained

by Gruber et al. and Burdick et al. (these parameters were rotated in the coordinate system used in this

paper as described in the text). CFP and Sk are in meV, hybridization parameter equals to 4.76 eV for Nd,

6.8 eV for Sm and Er.

Nd Sm Er

k q this paper Ref. 21 this paper Ref. 22 this paper Ref. 23

2 0 32.8 52.3 37.0 54.3 113.1 42.3

2 2 -28.7 -19.7 -23.8 -13.3 15.4 -27.6

4 0 -5.8 -23.5 -1.1 -16.1 -22.9 -21.4

4 2 253.9 273.4 223.2 238.7 183.8 185.5

4 4 -161.9 -119.5 -139.5 -60.7 -87.3 -52.1

6 0 -228.2 -241.1 -203.9 -197.0 -207.8 -146.0

6 2 77.9 73.5 73.8 85.2 93.4 40.0

6 4 114.9 103.5 102.4 117.2 68.3 65.6

6 6 108.8 72.2 95.2 85.5 54.1 64.7

2 23.3 26.5 22.4 25.7 51.5 25.7

Sk 4 142.0 140.9 124.1 116.2 96.2 91.1

6 93.8 88.0 83.9 85.7 76.4 56.5

VI. CONCLUSIONS

The crystal field parameters and the ĝ tensors of the ground state were calculated for all seven

rare-earth Kramers ions substituted for Y (Lu) in YAG (LuAG). Very good agreement with the

spectroscopic data and qualitative agreement with experimental ĝ tensors was found. A comparison

of calculated CFP with their counterparts obtained by the least squares fit to the optical data is fair

and it shows that theory can help to avoid the ambiguity inherent to the least squares approach.
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